Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T08:13:12.339Z Has data issue: false hasContentIssue false

Rigid Embedding of Simple Groups in the General Linear Group

Published online by Cambridge University Press:  20 November 2018

John D. Dixon*
Affiliation:
Carleton University, Ottawa, Ontario
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let K be a (commutative) field and n be a positive integer. Consider the K-algebra E = Mat (n, K) of all n X n matrices over K, and the corresponding general linear group GL(n, K). We shall define the set R of rigid mappings of E to consist of all a in GLK(E) which can be written in one of two possible forms: either xσ= axb for all x ϵ E or xσ = ax'b for all x ϵ E (where a and b are fixed elements of GL(n, K) and x’ denotes the transpose of x).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

1. Chevalley, C. and H.-F. Tuan, On algebraic Lie algebras, Proc. Nat. Acad. Sci. U.S.A. 31 (1945), 195196.Google Scholar
2. Chevalley, C., Theory of Lie groups (Princeton Univ. Press, Princeton, 1946).Google Scholar
3. Dieudonné, J., Sur une généralisation du groupe orthogonal à quatre variables, Arch. Math. 1 (1949), 282287.Google Scholar
4. Dixon, J. D., The structure of linear groups (Van Nostrand Reinhold, London, 1971).Google Scholar
5. Djokovic, D., Linear transformations of a tensor product preserving a fixed rank, Pacific J. Math. 30 (1969), 411414.Google Scholar
6. Dynkin, E. B., Maximal subgroups of the classical groups, Trudy Moskov. Mat. Obsc. 1 (1952), 39-166 (Amer. Math. Soc. Transi. (2) 6 (1957), 245378).Google Scholar
7. Humphreys, J. E., Linear algebraic groups (Springer-Verlag, New York, 1975).Google Scholar
8. Marcus, M., All linear operators leaving the unitary group invariant, Duke Math. J. 26 (1959), 155163.Google Scholar
9. Marcus, M. Linear transformations on matrices, J. Res. Nat. Bureau of Standards 75B (1971), 107113.Google Scholar
10. Pierce, S., Linear operators preserving the real symplectic group, Can. J. Math. 27 (1975), 715724.Google Scholar
11. Wei, A., Linear transformations preserving the real orthogonal group, Can. j. Math. 27 (1975), 561572.Google Scholar