Published online by Cambridge University Press: 20 November 2018
In this paper we represent certain linear operators in a space with indefinite metric. Such a space may be a pair (H, B), where H is a separable Hilbert space, B is a bilinear functional on H given by B(x, y) = [Jx, y], [, ] is the Hilbert inner product in H, and J is a bounded linear operator such that J = J* and J2 = I. If T is a linear operator in H, then ‖T‖ is the usual operator norm. The operator J above has two eigenspaces corresponding to the eigenvalues + 1 and –1.
In case the eigenspace in which J induces a positive operator has finite dimension k, a general spectral theory is known and has been developed principally by Pontrjagin [25], Iohvidov and Kreĭn [13], Naĭmark [20], and others.