No CrossRef data available.
Article contents
A Remark on BMW Algebra, q-Schur Algebras and Categorification
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We prove that the two-variable $\text{BMW}$ algebra embeds into an algebra constructed from the $\text{HOMFLY-PT}$ polynomial. We also prove that the $\mathfrak{s}{{\mathfrak{O}}_{2N}}-\text{BMW}$ algebra embeds in the $q$-Schur algebra of type $A$. We use these results to suggest a schema providing categorifications of the $\mathfrak{s}{{\mathfrak{D}}_{2N}}-\text{BMW}$ algebra.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2014
References
[1]
Birman, J. and Wenzl, H., Braids, link polyonomials and a new algebra.
Trans. Amer. Math. Soc.
313(1989), 249–273. http://dx.doi.org/10.1090/S0002-9947-1989-0992598-X
Google Scholar
[2]
Cautis, S., Kamnitzer, J., and Morrison, S., Webs and quantum skew howe duality. arxiv:1210.6437[math.QA].
Google Scholar
[3]
Doty, S. and Giaquinto, A., Presenting Schur algebras.
Internat. Math. Res. Not.
36(2002), 1907–1944.Google Scholar
[4]
Hoste, J., Ocneanu, A., Millet, K., Freyd,W, A.. Lickorish, and D. Yetter, A new polynomial invariant of knots and links.
Bull. Amer. Math. Soc.
12(1985), 239–246. http://dx.doi.org/10.1090/S0273-0979-1985-15361-3
Google Scholar
[5]
Kauffman, L., An invariant of regular isotopy.
Trans. Amer. Math. Soc.
318(1990), 417–471.
http://dx.doi.org/10.1090/S0002-9947-1990-0958895-7
Google Scholar
[6]
Kauffman, L., Knots and Physics. Third edition,World Scientific, River Edge, NJ, 1991.Google Scholar
[7]
Kauffman, L. and Vogel, P., Link polynomials and a graphical calculus.
J. Knot Theory Ramif.
1(1992), 59–104. http://dx.doi.org/10.1142/S0218216592000069
Google Scholar
[8]
Kazhdan, D. and Lusztig, G., Representations of Coxeter groups and Hecke algebras.
Invent. Math.
53(1979), 165–184. http://dx.doi.org/10.1007/BF01390031
Google Scholar
[9]
Khovanov, M., Triply-graded link homology and Hochschild homology of Soergel bimodules.
Internat. J. Math.
18(2007), 869–885. http://dx.doi.org/10.1142/S0129167X07004400
Google Scholar
[10]
Khovanov, M. and Lauda, A., A categorification of quantum sl(n). Quantum Topol.
1(2010), 1–92. http://dx.doi.org/10.4171/QT/1
Google Scholar
[11]
Khovanov, M., Erratum to A categorification of quantum sl(n). Quantum Topol. 2(2011), 97–99. http://dx.doi.org/10.4171/QT/15
Google Scholar
[12]
Khovanov, M., Mazorchuk, V., and Stroppel, C., A brief review of abelian categorifications.
Th. Appl. Categ.
22(2009), 479–508.Google Scholar
[13]
Khovanov, M. and Rozansky, L., Matrix Factorizations and link homology.
Fund. Math.
199(2008), 1–91. http://dx.doi.org/10.4064/fm199-1-1
Google Scholar
[14]
Khovanov, M., Matrix Factorizations and link homology II.
Geom. Topol.
12(2008), 1387–1425. http://dx.doi.org/10.2140/gt.2008.12.1387
Google Scholar
[15]
Khovanov, M. and Rozansky, L., Virtual crossings, convolutions and a categorification of the SO(2N) Kauffman polynomial.
J. Gökova Geom. Topol.
1(2007), 116–214.Google Scholar
[16]
Mackaay, M., Stošić, M., and Vaz, P., A diagrammatic categorification of the q-Schur algebra.
Quantum Topol.
4(2013), 1–75. http://dx.doi.org/10.4171/QT/34
Google Scholar
[17]
Mazorchuk, V. and C. Stroppel, , Categorification of (induced) cell modules and the rough structure of generalised Verma modules.
Adv. Math.
219(2008), 1363–1326. http://dx.doi.org/10.1016/j.aim.2008.06.019
Google Scholar
[18]
Morrison, S., A diagrammatic category for the representation theory of Uq (sl(N)), UC Berkeley Ph.D. thesis, 2007, arxiv:0704.1503.
Google Scholar
[20]
Murakami, H., Ohtsuki, T., and Yamada, S., HOMFLY polynomial via an invariant of colored plane graphs.
Enseign. Math.
33(1998), 325–360.Google Scholar
[21]
Murakami, J., The Kauffman polynomial of links and representation theory.
Osaka J. Math.
24(1987), 745–758.Google Scholar
[22]
Przytycki, J. and Traczyk, P., Invariants of links of Conway type.
Kobe J. Math.
4(1987), 115–139.Google Scholar
[23]
Ringel, C., Tame algebras and integral quadratic forms.
Lecture Notes in Math. 1099, Springer, Berlin, 1984.Google Scholar
[24]
Soergel, W., Kazhdan–Lusztig–Polynome und unzerlegbare Bimoduln über Polynomringen.
J. Inst. Math. Jussieu
6(2007), 501–525. http://dx.doi.org/10.1017/S1474748007000023
Google Scholar
[25]
Stošić, M., Indecomposable 1-morphisms of and the canonical basis of .
arxiv:1105.4458v1[math.QA].
Google Scholar
[26]
Wu, H., On the Kauffman–Vogel and Murakami–Ohtsuki–Yamada graph polynomials. arxiv:1107.5333[math.GT].
Google Scholar
You have
Access