No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
A real AF C*-algebra is the norm closure of a direct limit of finite dimensional real C*-algebras (with real *-algebra maps). When we use the unadorned “AF C*-algebra”, we mean the usual complex version.
Let R be a simple AF C*-algebra such that K0(R) is free of rank 2 or 3. The problem is to find (up to Morita equivalence) all real AF C*-algebras A such that AꕕC≅R. This is closely related to the problem of finding all involutions on R [3], [10].
For example, when the rank is 2, generically there are 8 such classes. The exceptional cases arise when the ratio of the two generators in K0(R) is a quadratic (algebraic) number, and here there are 4, 5, or 8 Morita equivalence classes, the number depending largely on the behaviour of the prime 2 in the relevant algebraic number field.