Article contents
Ramification of the Eigencurve at Classical RM Points
Published online by Cambridge University Press: 07 March 2019
Abstract
J. Bellaïche and M. Dimitrov showed that the $p$-adic eigencurve is smooth but not étale over the weight space at $p$-regular theta series attached to a character of a real quadratic field $F$ in which $p$ splits. In this paper we prove the existence of an isomorphism between the subring fixed by the Atkin–Lehner involution of the completed local ring of the eigencurve at these points and a universal ring representing a pseudo-deformation problem. Additionally, we give a precise criterion for which the ramification index is exactly 2. We finish this paper by proving the smoothness of the nearly ordinary and ordinary Hecke algebras for Hilbert modular forms over $F$ at the overconvergent cuspidal Eisenstein points, being the base change lift for $\text{GL}(2)_{/F}$ of these theta series. Our approach uses deformations and pseudo-deformations of reducible Galois representations.
Keywords
MSC classification
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2019
Footnotes
The author’s research was supported by the EPSRC Grant EP/R006563/1. The author also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 682152).
References
- 2
- Cited by