Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T10:41:53.281Z Has data issue: false hasContentIssue false

Quantum Cohomology of Minuscule Homogeneous Spaces III Semi-Simplicity and Consequences

Published online by Cambridge University Press:  20 November 2018

P. E. Chaput*
Affiliation:
Laboratoire de Mathématiques Jean Leray, UFR Sciences et Techniques, Nantes, France
L. Manivel*
Affiliation:
Institut Fourier, Université de Grenoble I, Saint-Martin d’Héres, France
N. Perrin*
Affiliation:
Institut de Mathématiques, Université Pierre et Marie Curie, PARIS, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that the quantum cohomology ring of any minuscule or cominuscule homogeneous space, specialized at $q\,=\,1$, is semisimple. This implies that complex conjugation defines an algebra automorphism of the quantum cohomology ring localized at the quantum parameter. We check that this involution coincides with the strange duality defined in our previous article. We deduce Vafa–Intriligator type formulas for the Gromov–Witten invariants.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

References

[A] Abrams, L., The quantum Euler class and the quantum cohomology of the Grassmannians. Israel J. Math. 117(2000), 335–352. doi:10.1007/BF02773576Google Scholar
[B] Bertram, A., Quantum Schubert calculus. Adv. Math. 128(1997), no. 2, 289–305. doi:10.1006/aima.1997.1627Google Scholar
[Bou] Bourbaki, N., Groupes et algèbres de Lie. Actualités Scientifiques et Industrielles, 1337, Hermann, Paris, 1968.Google Scholar
[BKT1] Buch, A., Kresch, A., and Tamvakis, H., Gromov–Witten invariants on Grassmannians. J. Amer. Math. Soc. 16(2003), no. 4, 901–915. doi:10.1090/S0894-0347-03-00429-6Google Scholar
[C MP1] Chaput, P.-E., Manivel, L., and Perrin, N., Quantum cohomology of minuscule homogeneous spaces. Transform. Groups 13(2008), no. 1, 47–89. doi:10.1007/s00031-008-9001-5Google Scholar
[C MP2] Chaput, P.-E., Manivel, L., Quantum cohomology of minuscule homogeneous spaces II. Hidden symmetries. Int. Math. Res. Not. 2007, no. 22.Google Scholar
[Ch] Cheong, D., Quantum cohomology rings of Lagrangian and orthogonal Grassmannians and total positivity. Trans. Amer. Math. Soc. 361(2009), no. 10, 5505–5537. doi:10.1090/S0002-9947-09-04720-5Google Scholar
[H] Hengelbrock, H., An involution of the quantum cohomology ring of the Grassmannian. http://arxiv.org/abs/math.AG/0205260.Google Scholar
[KT] Kresch, A. and Tamvakis, H., Quantum cohomology of orthogonal Grassmannians. Compos. Math. 140(2004), no. 2, 482–500. doi:10.1112/S0010437X03000204Google Scholar
[M] Mehta, L. M., Basic sets of invariant polynomials for finite reflection groups. Comm. Algebra 16(1988), no. 5, 1083–1098. doi:10.1080/00927878808823619Google Scholar
[P] Postnikov, A., Affine approach to quantum Schubert calculus. Duke Math. J. 128(2005), no. 3, 473–509. doi:10.1215/S0012-7094-04-12832-5Google Scholar
[R] Rietsch, K., Quantum cohomology rings of Grassmannians and total positivity. Duke Math. J. 110(2001), no. 3, 523–553. doi:10.1215/S0012-7094-01-11033-8Google Scholar
[ST] Siebert, B. and Tian, G., On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator. Asian J. Math. 1(1997), no. 4, 679–695.Google Scholar
[T] Tamvakis, H., Quantum cohomology of isotropic Grassmannians. In: Geometric methods in algebra and number theory, Progr. Math., 235, Birkhäuser, Boston, MA, 2005, pp. 311–338.Google Scholar