Published online by Cambridge University Press: 20 November 2018
A quantization of a fixed classical mechanical system is firstly an association between quantum mechanical observables (preferably self-adjoint operators on Hilbert space) and classical mechanical observables (i.e. real-valued functions on phase space). Secondly, a quantization should permit an interpretation of the correspondence principle that ‘classical mechanics is the limit of quantum mechanics as Planck's constant approaches zero'. With these two underlying precepts, Section 2 states the four basic requirements, I to IV, of a quantization along with an additional requirement V that characterizes the subclass of special quantizations.