Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T01:51:32.975Z Has data issue: false hasContentIssue false

Primes Dividing Invariants of CM Picard Curves

Published online by Cambridge University Press:  07 May 2019

Pınar Kılıçer
Affiliation:
Johann Bernoulli Instituut voor Wiskunde en Informatica, Rijksuniversiteit Groningen, Nijenborgh 9, 9747 AGGroningen, Nederland Email: [email protected]
Elisa Lorenzo García
Affiliation:
IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France Email: [email protected]
Marco Streng
Affiliation:
Mathematisch Instituut, Universiteit Leiden, P.O. box 9512, 2300 RA Leiden, The Netherlands Email: [email protected]

Abstract

We give a bound on the primes dividing the denominators of invariants of Picard curves of genus 3 with complex multiplication. Unlike earlier bounds in genus 2 and 3, our bound is based, not on bad reduction of curves, but on a very explicit type of good reduction. This approach simultaneously yields a simplification of the proof and much sharper bounds. In fact, unlike all previous bounds for genus 3, our bound is sharp enough for use in explicit constructions of Picard curves.

Type
Article
Copyright
© Canadian Mathematical Society 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Author E. L. G. was partially supported by a project PEPS-Jeunes Chercheur-e-s - 2017. Author P. K. was partially supported by DFG priority project SPP 1489.

References

Arora, Sonny and Eisentraeger, Kirsten, Constructing Picard curves with complex multiplication using the Chinese Remainder Theorem. To appear in Algorithmic Number Theory Symposium, 13. Open Book Series. Mathematical Sciences Publishers, Berkeley, CA. http://www.math.grinnell.edu/∼paulhusj/ants2018/paper-arora.html.Google Scholar
Balakrishnan, Jennifer S., Ionica, Sorina, Lauter, Kristin, and Vincent, Christelle, Constructing genus-3 hyperelliptic Jacobians with CM. LMS J. Comput. Math. 19(2016), suppl. A, 283300. https://doi.org/10.1112/S1461157016000322Google Scholar
Belding, Juliana, Bröker, Reinier, Enge, Andreas, and Lauter, Kristin, Computing Hilbert class polynomials. In: Algorithmic number theory. Lecture Notes in Comput. Sci., 5011, Springer, Berlin, 2008, pp. 282295.Google Scholar
Bosch, Siegfried, Lütkebohmert, Werner, and Raynaud, Michel, Néron models. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1990.Google Scholar
Bouw, Irene, Cooley, Jenny, Lauter, Kristin, Lorenzo García, Elisa, Manes, Michelle, Newton, Rachel, and Ozman, Ekin, Bad reduction of genus three curves with complex multiplication. In: Women in numbers Europe. Assoc. Women Math. Ser., 2., Springer, Cham, 2015, pp. 109151.Google Scholar
Bouyer, Florian and Streng, Marco, Examples of CM curves of genus two defined over the reflex field. LMS J. Comput. Math. 18(2015), 1, 507538. https://doi.org/10.1112/S1461157015000121Google Scholar
Bruinier, Jan Hendrik and Yang, Tonghai, CM-values of Hilbert modular functions. Invent. Math. 163(2006), 2, 229288. https://doi.org/10.1007/s00222-005-0459-7Google Scholar
Eisenträger, Kirsten and Lauter, Kristin, A CRT algorithm for constructing genus 2 curves over finite fields. In: Arithmetics, geometry, and coding theory. Sémin. Congr., 21, Soc. Math. France, Paris, 2010, pp. 161176.Google Scholar
Gaudry, Pierrick, Houtmann, Thomas, Kohel, David, Ritzenthaler, Christophe, and Weng, Annegret, The 2-adic CM method for genus 2 curves with application to cryptography. In: Advances in cryptology—ASIACRYPT 2006. Lecture Notes in Comput. Sci., 4284, Springer, Berlin, 2006, pp. 114129.Google Scholar
Goren, Eyal Z. and Lauter, Kristin E., Class invariants for quartic CM fields. Ann. Inst. Fourier (Grenoble) 57(2007), 2, 457480. https://doi.org/10.5802/aif.2264Google Scholar
Goren, Eyal Z. and Lauter, Kristin E., Genus 2 curves with complex multiplication. Int. Math. Res. Not. IMRN 2012(2012), 5, 10681142. https://doi.org/10.1093/imrn/rnr052Google Scholar
Holzapfel, Rolf-Peter, The ball and some Hilbert problems. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1995.Google Scholar
Kılıçer, Pınar, Labrande, Hugo, Lercier, Raynald, Ritzenthaler, Christophe, Sijsling, Jeroen, and Streng, Marco, Plane quartics over ℚ with complex multiplication. Acta Arith. 185(2018), 127156. https://doi.org/10.4064/aa170227-16-3Google Scholar
Kılıçer, Pınar, Lauter, Kristin, Lorenzo García, Elisa, Newton, Rachel, Ozman, Ekin, and Streng, Marco, A bound on the primes of bad reduction for CM curves of genus $3$. arxiv:1609.05826.Google Scholar
Kılıçer, Pınar, Lorenzo García, Elisa, and Streng, Marco, Implementation of the denominator bounds of ‘Primes dividing invariants of CM Picard curves’ and ‘A bound on the primes of bad reduction for CM curves of genus 3’, 2018. https://bitbucket.org/mstreng/picard_primes/src/master/primes_CM_Picard.sage.Google Scholar
Koike, Kenji and Weng, Annegret, Construction of CM Picard curves. Math. Comp. 74(2005), 499518. https://doi.org/10.1090/S0025-5718-04-01656-4Google Scholar
Lang, Serge, Complex multiplication. Grundlehren der Mathematischen Wissenschaften, 255, Springer-Verlag, New York, 1983.Google Scholar
Lario, Joan-C. and Somoza, Anna, A note on Picard curves of CM-type. arxiv:1611.02582.Google Scholar
Lauter, Kristin and Viray, Bianca, An arithmetic intersection formula for denominators of Igusa class polynomials. Amer. J. Math. 137(2015), 2, 497533. https://doi.org/10.1353/ajm.2015.0010Google Scholar
Liu, Qing, Algebraic geometry and arithmetic curves. Oxford Graduate Texts in Mathematics, 6, Oxford University Press, Oxford, 2002.Google Scholar
Mumford, David, Prym varieties. I. In: Contributions to analysis (a collection of papers dedicated to Lipman Bers). Academic Press, New York, 1974, pp. 325350.Google Scholar
Mumford, David, Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, 5, Hindustan Book Agency, New Delhi, 2008.Google Scholar
Ritzenthaler, Christophe and Romagny, Matthieu, On the Prym variety of genus 3 covers of genus 1 curves. Épijournal Geom. Algébrique 2(2018), Art. 2, 8 arxiv:1612.07033.Google Scholar
Siegel, Carl Ludwig, Lectures on the geometry of numbers. Springer-Verlag, Berlin, 1989.Google Scholar
Spallek, Anne-Monika, Kurven vom geschlecht $2$ und ihre anwendung in public-key-kryptosystemen. PhD thesis, Institut für Experimentelle Mathematik, Universität GH Essen, 1994.Google Scholar
Stein, William A., et al. , SageMath, the Sage Mathematics Software System (Version 7.4). The SageMath Development Team, 2016. http://www.sagemath.org.Google Scholar
van Wamelen, Paul, Examples of genus two CM curves defined over the rationals. Math. Comp. 68(1999), 225, 307320.Google Scholar
Weng, Annegret, A class of hyperelliptic CM-curves of genus three. J. Ramanujan Math. Soc. 16(2001), 4, 339372.Google Scholar