Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T05:53:18.252Z Has data issue: false hasContentIssue false

Prime Ideals in Vector Lattices

Published online by Cambridge University Press:  20 November 2018

D. G. Johnson
Affiliation:
The Pennsylvania State University
J. E. Kist
Affiliation:
The Pennsylvania State University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Projectors, spectral functions, carriers, and collections of these objects are some of the tools which have been used to study vector lattices. One of our objectives in this paper is to show that these various approaches are not essentially different. We do this by proving that each of the above-mentioned objects can be identified with a collection of prime ideals.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1962

References

1. Amemiya, I., A general spectral theory in semi-ordered linear spaces, J. Fac. Sci. Hokkaido Univ. Ser. I, 12 (1953), 111156.Google Scholar
2. Birkhofï, G., Lattice Theory, Amer. Math. Soc. Colloq. Publ. XXV (New York, 1948).Google Scholar
3. Bourbaki, N., Integration, chapter n, Actualités Scientifiques et Industrielles, No. 1175.Google Scholar
4. Goffman, C., Remarks on lattice ordered groups and vector lattices, I. Caratheodory functions, Trans. Amer. Math. Soc, 88 (1958), 107120.Google Scholar
5. Goffman, C., dass of lattice ordered algebras, Bull. Amer. Math. Soc, 64 (1958), 170173.Google Scholar
6. Henriksen, M. and Johnson, D. G., On the structure of a class of lattice ordered algebras, Fund. Math., 50 (1961), 7394.Google Scholar
7. Jaffard, P., Contribution à Vétude des groupes ordonnés, J. Math. Pures Appl., 32 (1953), 203280.Google Scholar
8. Lorenzen, P., Abstrakte Begrùndung der multiplikativen Idealtheorie, Math. Z., 45 (1939), 533553.Google Scholar
9. McCoy, N. H., Rings and Ideals, Carus Monograph No. 8, Math. Assoc Amer. (Buffalo, 1948).Google Scholar
10. Nakano, H., Modem Spectral Theory, Tokyo Mathematical Book Series No. 2 (Tokyo, 1950).Google Scholar
11. Nakano, H., Eine Spektraltheorie, Proc Phys.-Math. Soc. Japan, 23 (1941), 485511.Google Scholar
12. Ribenboim, P., Un théorème de réalisation de groupes réticulés, Pac J. Math., 10 (1960), 305308.Google Scholar
13. Yosida, K., On the representation of the vector lattice, Proc. Imp. Acad. Tokyo, 18 (1942), 339342.Google Scholar