Article contents
Polynomials with Certain Prescribed Conditions on the Galois Group
Published online by Cambridge University Press: 20 November 2018
Extract
In this paper, some contributions are made to the theory of algebraic equations over the rational field with conditions imposed on the Galois group. In § 1, for a given abstract group G all faithful permutation representations Ḡ are obtained, and it is shown that if one of them is the group of some equation with splitting field K, then any of them is the group of some equation, also with splitting field K. The method of proof enables us to construct an equation having as group a given faithful permutation representation Ḡ of a prescribed group G if we are given an equation having as group some faithful representation of G. In § 2, equations having nilpotent group are considered, non-normal extension fields are discussed, and a canonical form is obtained for the roots of non-normal irreducible equations; this form is used to characterize fields and equations with nilpotent groups.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1969
References
- 1
- Cited by