Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T10:35:04.906Z Has data issue: false hasContentIssue false

A Periodic Jacobi-Perron Algorithm

Published online by Cambridge University Press:  20 November 2018

Leon Bernstein*
Affiliation:
Tel Aviv, Israel
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the first part of this paper I shall demonstrate that one irrational root of the algebraic equation

creates an algebraic number field, out of which n — 1 irrationals can be chosen so that they yield a periodic Jacobi-Perron algorithm. The coefficients in (1) are subject to certain restrictions which will be elaborated below.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1965

References

1. Bernstein, Leon, Periodical continued fractions for irrationals of degree n by Jacobi's algorithm, J. Reine Angew. Math., 213 (1963), 3138.Google Scholar
2. Bernstein, Leon, Periodicity of Jacobi's algorithm for a special type of cubic irrationals, J. Reine Angew. Math., 213 (1964), 137146.Google Scholar
3. Bernstein, Leon, Representation of as a periodical continued fraction by Jacobi's algorithm, Math. Nachr. (1965).Google Scholar
4. Bernstein, Leon, Periodische Jacobische Algorithmen für eine unendliche Klasse algebraischer In ationalzahlen vom Grade n und einige unendliche Klassen kubischer Irrationalzahlen, J. Reine Angew. Math., 215/215 (1964), 7683.Google Scholar
5. Bernstein, Leon, Periodische Jacobi-Perronsche Algorithmen, 15 (1964), 421-429.Google Scholar
5. Bernstein, Leon, Rational approximations of algebraic irrationals by means of a modified J acobi-P err on algorithm, Duke Math J., 82 (1965), 161176.Google Scholar
7. Bernstein, Leon and Hasse, Helmut, Einheitsberechnungmittels des Jacobi-P err onschen Algorithms, J. Reine Angew. Math. (1965).Google Scholar
8. Jacobi, C. G., Allgemeine Théorie der kettenbruchaehnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird, J. Reine Angew. Math., 69 (1868).Google Scholar
9. Perron, Oskar, Grundlagen für eine Théorie des Jacobischen Kettenbruchalgorithmus, Math. Ann., 64 (1907), 176.Google Scholar