Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T02:26:56.622Z Has data issue: false hasContentIssue false

Orthomorphisms of Groups and Orthogonal Latin Squares. I

Published online by Cambridge University Press:  20 November 2018

Diane M. Johnson
Affiliation:
University of Manitoba
A. L. Dulmage
Affiliation:
University of Manitoba
N. S. Mendelsohn
Affiliation:
University of Manitoba
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Euler (6) in 1782 first studied orthogonal latin squares. He showed the existence of a pair of orthogonal latin squares for all odd n and conjectured their non-existence for n = 2(2k + 1). MacNeish (8) in 1921 gave a construction of n — 1 mutually orthogonal latin squares for n = p with p prime and of n(v) mutually orthogonal squares of order v where

with p1 p2, … , Pr being distinct primes and

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1961

References

1. Bose, R. C. and Nair, K. R., On complete sets of Latin squares, Sankhya, 5 (1941), 361382.Google Scholar
2. Bose, R. C. and Shrikhande, S. S., On the falsity of Euler's conjecture about the non-existence of two orthogonal Latin squares of order 4t+2, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 734737.Google Scholar
3. Bose, R. C., Shrikhande, S. S., and Parker, E. T., Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture, Can. J. Math., 12 (1960), 189-203.Google Scholar
4. Bruck, R. H., Finite nets I, numerical invariants, Can. J. Math., 3 (1951), 94-107.Google Scholar
5. Dulmage, A. L., Johnson, D. M., and Mendelsohn, N. S., Orthogonal Latin squares, Can. Math. Bull., 2 (1959), 211-216.Google Scholar
6. Euler, L., Recherches sur une nouvelle espèce des quarrés magiques, Verh. Zeeuwsch Genoot. Weten Vliss, 9 (1782), 85-239.Google Scholar
7. Hall, Marshall, Projective planes, Trans. Amer. Math. Soc., 54 (1943), 229-277.Google Scholar
8. MacNeish, H. F., Euler squares, Ann. Math., 23 (1921), 221-227.Google Scholar
9. Parker, E. T., Construction of some sets of pairwise orthogonal latin squares, Notices Amer. Math. Soc, 5 (1958), 815 (Abstract).Google Scholar
10. Parker, E. T. Construction of some sets of mutually orthogonal latin squares, Proc. Amer. Math. Soc., 10 (1959), 949-951.Google Scholar
11. Parker, E. T. Orthogonal Latin squares, Proc Nat. Acad. Sci. U.S.A., 46 (1959), 859-862Google Scholar
12. Paige, L. J., Complete mappings of finite groups, Pac J. Math., 1 (1951), 111-116.Google Scholar
13. Paige, L. J. and Hall, Marshall, Complete mappings of finite groups, Pac. J. Math., 5 (1955), 541-549.Google Scholar
14. Pickert, Gunter, Projective Ebene (Springer, Berlin), page 90.Google Scholar
15. Singer, J., A class of groups associated with Latin squares, Amer. Math. Monthly, 67 (1960), 235-240.Google Scholar
16. Tarry, G., Le problème des 36 officiers, Ass. France Av. Sci., 29 (1900), 170-203.Google Scholar