Published online by Cambridge University Press: 20 November 2018
It is well-known that every weak basis in a Fréchet space is actually a basis. This result, called the weak basis theorem was first given for Banach spaces in 1932 by Banach [1, p. 238], and extended to Fréchet spaces by Bessaga and Petczynski [3]. McArthur [12] proved an analogue for bases of subspaces in Fréchet spaces, and recently W. J. Stiles [18, Corollary 4.5, p. 413] showed that the theorem fails in the non-locally convex spaces lp (0 < p < 1). The purpose of this paper is to prove the following generalization of Stiles' result.