Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:49:23.095Z Has data issue: false hasContentIssue false

On the Notion of Conductor in the Local Geometric Langlands Correspondence

Published online by Cambridge University Press:  20 November 2018

Masoud Kamgarpour*
Affiliation:
School of Mathematics and Physics, The University of Queensland, Australia e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Under the local Langlands correspondence, the conductor of an irreducible representation of $\text{G}{{\text{l}}_{n}}\left( F \right)$ is greater than the Swan conductor of the corresponding Galois representation. In this paper, we establish the geometric analogue of this statement by showing that the conductor of a categorical representation of the loop group is greater than the irregularity of the corresponding meromorphic connection.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[1] Beilinson, A. and Drinfeld, V., Quantization of Hitchin's Integrable system and Heche eigensheaves. 1997. http://www.math.uchicago.edu/-mitya/langlands/hitchin/BD-hitchin.pdf Google Scholar
[2] Beilinson, A.,Opers. arxiv:math/0501398.Google Scholar
[3] Casselman, W., On some results ofAtkin and Lehner. Math. Ann. 201(1973), 301314. http://dx.doi.org/10.1007/BF01428197 Google Scholar
[4] Chen, T.-H. and Kamgarpour, M., Preservation of depth in local geometric Langlands correspondence. arxiv:1404.0598Google Scholar
[5] Chervov, A. V. and Molev, A. I., On higher-order Sugawara operators. Int. Math. Res. Not. IMRN 2009, no. 9, 16121635. http://dx.doi.Org/10.1093/imrn/rnn168 Google Scholar
[6] Chervov, A. V. and Talalaev, D., Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence. arxiv:hep-th/0604128Google Scholar
[7] Deligne, P., Équations différentielles á points singuliers réguliers. Lecture Notes in Mathematics, 163, Springer-Verlag, Berlin, 1970.Google Scholar
[8] Drinfeld, V. G. and Sokolov, V. V., Lie algebras and equations of Korteweg-de Vries type. Current problems in mathematics, 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 81180 Google Scholar
[9] Feigin, B. and Frenkel, E., Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras. In: Infinite analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992, pp. 197215.Google Scholar
[10] Frenkel, E., Affine Kac-Moody algebras, integrable systems, and their deformations. 2002. https://math.berkeley.edu/~frenkel/lecture.pdf Google Scholar
[11] Frenkel, E., Langlands correspondence for loop groups. Cambridge Studies in Advanced Mathematics, 103, Cambridge University Press, Cambridge, 2007.Google Scholar
[12] Frenkel, E. and Ben-Zvi, D., Vertex algebras and algebraic curves. Mathematical Surveys and Mono¬graphs, 88, American Mathematical Society, Providence, RI, 2004.Google Scholar
[13] Frenkel, E. and Gaitsgory, D., Local geometric Langlands correspondence and affine Kac-Moody algebras. In: Algebraic geometry and number theory, Progr. Math., 253, Birkhäuser Boston, Boston, MA, 2006, pp. 69260. http://dx.doi.Org/10.1090/surv/088 Google Scholar
[14] Frenkel, E. and Zhu, X., Any flat bundle on a punctured disc has an oper structure. Math. Res. Lett. 17(2010), no. 1, 2737. http://dx.doi.org/10.4310/MRL.2010.v17.n1.a3 Google Scholar
[15] Gaitsgory, D. and Barlev, J., Notes on Opers – seminar on quantization of the Hitchin system. 2009. http://www.math,harvard.edu/~gaitsgde/grad_2009/SeminarNotes/March2-9(Opers).pdf. Google Scholar
[16] Gross, B. and Reeder, M., Arithmetic invariants of discrete Langlands parameters. Duke Math. J. 154(2010), no. 3, 431508. http://dx.doi.org/10.1215/00127094-2010-043 Google Scholar
[17] Jacquet, H., Piatetski-Shapiro, I., and Shalika, J., Conducteur des représentations du groupe linéaire. Math. Ann. 256(1981), no. 2, 199214. http://dx.doi.org/10.1007/BF01450798 Google Scholar
[18] Kac, V. G., Infinite-dimensional Lie algebras. Third ed., Cambridge University Press, Cambridge,1990. http://dx.doi.org/10.1017/CBO9780511626234 Google Scholar
[19] Kamgarpour, M., Compatibility of Feigin-Frenkel Isomorphism and Harish-Chandra Isomorphism for jet algebras. Transactions of AMS, 2014.Google Scholar
[20] Kamgarpour, M. and Schedler, T., Geometrization of principal series representations of reductive groups. Annales de linstitut Fourier, 2015. http://dx.doi.Org/10.58O2/aif.2988 Google Scholar
[21] Katz, N. M., On the calculation of some differential Galois groups. Invent. Math. 87(1987), no. 1, 1361. http://dx.doi.Org/10.1007/BF01389152 Google Scholar
[22] K. S.|Kedlaya, p-adic differential equations. Cambridge Studies in Advanced Mathematics, 125,Cambridge University Press, Cambridge, 2010. http://dx.doi.Org/10.1017/CBO9780511750922 Google Scholar
[23] Komatsu, H., On the index of ordinary differential operators. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18(1971), 379398.Google Scholar
[24] Luu, M., Local Langlands duality and a duality of conformai field theories. 2015. arxiv:1506.00663Google Scholar
[25] Malgrange, B., Sur les points singuliers des équations différentielles. Enseignement Math.(2) 20(1974), 147176.Google Scholar
[26] Tsai, P.-Y., On new forms for split special odd orthogonal groups. Ph. D. thesis, Harvard University, 2013. http://math.harvard.edu/~pytsai/FixedVectors.pdf Google Scholar
[27] Wedhorn, T., The local Langlands correspondence for GL(n) over p-adic fields. In: School on Auto-morphic Forms on GL(n), ICTP Lect. Notes, 21, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2008, pp. 237320.Google Scholar