Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T09:15:41.949Z Has data issue: false hasContentIssue false

On the Law of the Iterated Logarithm for Infinite Dimensional Ornstein-Uhlenbeck Processes

Published online by Cambridge University Press:  20 November 2018

QI-Man Shao*
Affiliation:
Department of Mathematics, Hangzhou University, Hangzhou, Zhejiang, People's Republic of China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let be independent Ornstein-Uhlenbeck processes and In this paper the law of iterated logarithm for X(t, n)is considered. The results obtained improve those of Csorgő and Lin(1988) and Schmuland(1987).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1993

References

1. Csáki, E., Csorgő, M. and Shao, Q.M., Moduli of continuity for Gaussian processes, Tech. Rep. Ser. Lab. Res. Stat. Probab. 160, Carleton University-University of Ottawa, 1991.Google Scholar
2. Csorgő, M. and Lin, Z.Y., A law of the iterated logarithm for infinite dimensional Ornstein-Uhlenbeck processes, C.R. Math. Rep. Acad. Sci. Canada 10(1988), 113118.Google Scholar
3. Dawson, D.A., Stochastic evolution equations, Math. Biosciences 15(1972), 152.Google Scholar
4. Fernique, X., La régularité des fonctions aléatoires d'Orenstein-Uhlenbeck a valeurs dans ℓ2; le cas diagonal, C.R. Acad. Sci. Paris 309(1989), 5962.Google Scholar
5. Fernique, X., Continuité des processus Gaussiens, C.R. Acad. Sci. Paris 258(1964), 60586060.Google Scholar
6. Iscoe, I. and McDonald, D., Continuity of’ ℓ2-valued Ornstein-Uhlenbeck processes, Tech. Rep. Ser. Lab. Res. Stat. Probab. 58, Carleton University-University of Ottawa, 1986.Google Scholar
7. Schmuland, B., Dirichlet forms and infinite dimensional Ornstein-Uhlenbeck processes, Ph.D. Dissertation, Carleton University, Ottawa, 1987.Google Scholar