Article contents
On the Finiteness length of some soluble linear groups
Published online by Cambridge University Press: 21 April 2021
Abstract
Given a commutative unital ring R, we show that the finiteness length of a group G is bounded above by the finiteness length of the Borel subgroup of rank one
$\textbf {B}_2^{\circ }(R)=\left ( \begin {smallmatrix} * & * \\ 0 & * \end {smallmatrix}\right )\leq \operatorname {\textrm {SL}}_2(R)$
whenever G admits certain R-representations with metabelian image. Combined with results due to Bestvina–Eskin–Wortman and Gandini, this gives a new proof of (a generalization of) Bux’s equality on the finiteness length of S-arithmetic Borel groups. We also give an alternative proof of an unpublished theorem due to Strebel, characterizing finite presentability of Abels’ groups
$\textbf {A}_n(R) \leq \operatorname {\textrm {GL}}_n(R)$
in terms of n and
$\textbf {B}_2^{\circ }(R)$
. This generalizes earlier results due to Remeslennikov, Holz, Lyul’ko, Cornulier–Tessera, and points out to a conjecture about the finiteness length of such groups.
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2021
Footnotes
The work was supported by the Deutscher Akademischer Austauschdienst (Förder-ID 57129429) and the Bielefelder Nachwuchsfonds.
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221104022241444-0931:S0008414X21000213:S0008414X21000213_inline986.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221104022241444-0931:S0008414X21000213:S0008414X21000213_inline987.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221104022241444-0931:S0008414X21000213:S0008414X21000213_inline988.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221104022241444-0931:S0008414X21000213:S0008414X21000213_inline989.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221104022241444-0931:S0008414X21000213:S0008414X21000213_inline990.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221104022241444-0931:S0008414X21000213:S0008414X21000213_inline991.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221104022241444-0931:S0008414X21000213:S0008414X21000213_inline992.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221104022241444-0931:S0008414X21000213:S0008414X21000213_inline993.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221104022241444-0931:S0008414X21000213:S0008414X21000213_inline994.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221104022241444-0931:S0008414X21000213:S0008414X21000213_inline995.png?pub-status=live)
- 3
- Cited by