Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T14:01:50.233Z Has data issue: false hasContentIssue false

On the Decomposition of a Representation of SOn When Restricted to SOn-1

Published online by Cambridge University Press:  20 November 2018

Benedict H. Gross
Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, U.S.A.
Dipendra Prasad
Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let k be a local field, with char(k) ≠ 2. A quadratic space V over k is a finite dimensional vector space together with a non-degenerate quadratic form Q: Vk.The special orthogonal group SO(V) consists of all linear maps T: VV which satisfy:

Q(Tv) = Q(v) for all ν and det T = 1.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1992

References

[A] Arthur, J., Lectures on automorphic L-functions. L-functions and arithmetic, London Math. Soc. Lecture Notes. 153(1991), 121.Google Scholar
[B-Z] Bernstein, J. and Zelevinsky, A., Representations of the group GL(AI,F) where F is a non-archimedean local field, Usp. Nat. Nauk. 31(1976), 570.Google Scholar
[Bo] Borel, A., Automorphic L-functions, Proceedings of Symposia in Pure Math. (2). 33(1979), 2761.Google Scholar
[C-S] Casselman, W. and Shalika, J., The unramified principal series of p-adic groups, Compositio Math.. 41(1980), 207231.Google Scholar
[De] Deligne, P., Les constants locales de V équation fonctionelle de la fonction Ld'Artin d'une representation orthogonale, Invent. Math.. 35(1976), 299316.Google Scholar
[D] Dixmier, J., Representations intégrables du groupe de de Sitter, Bull. Soc. Math. France 89(1961), 941 .Google Scholar
[F] Flath, D., Decomposition of representations into tensor products, Proc. of Symposia in Pure Math. (1) 33(1979), 179184.Google Scholar
[G-K] Gelfand, I.M. and Kazhdan, D.A., Representations of GLn(K), Lie groups and their representations, Halstead Press, 1975.Google Scholar
[Gr-P] Gross, B. H. and Prasad, D., Test vectors for invariant forms, Math. Ann. 291(1991), 343 355.Google Scholar
[Gr] Gross, B. H., L-functions at the central critical point. Google Scholar
[Hi] Hirai, T., On irreducible representations of the Lorentz group ofn-th order, Proc. Japan Adad. 38(1962), 258 262.Google Scholar
[H-Kl] Harris, M. and Kudla, S., Arithmetic automorphic forms for the non-holomorphic discrete series of Sp(2), Duke Math. J. 66(1992), 59 121.Google Scholar
[H-K2] Harris, M. and Kudla, S., The central critical value of a triple product L-function, Annals of Mathematics 133(1991), 605 672.Google Scholar
[Kn] Knapp, A. W., Representation theory of semisimple groups, Princeton Univ. Press, 1986.Google Scholar
[Ks] Kostant, B., On Whittaker vectors and representation theory, Invent. Math. 48(1978), 101 184.Google Scholar
[K] Kottwitz, R., Stable trace formula: cuspidal tempered terms, Duke Math. J. 51(1984), 611 650.Google Scholar
[Li] Li, J.-S., Theta lifting for unitary representations with non-zero cohomology, Duke Math. J. 61(1990), 913 937.Google Scholar
[M] Martens, S., The characters of the holomorphic discrete series, Proc. Nat. Acad. Sci. USA, 72(1975), 3275 3276.Google Scholar
[PI] Prasad, D., Trilinear forms for representations of GL(2) and local epsilon factors, Compositio 75(1990), 1 46.Google Scholar
[P2] Prasad, D., Invariant forms for representations of GL(2) over a local field, American Journal of Math., (1992).Google Scholar
[R] Rallis, S.. Personal communication.Google Scholar
[Ro] Rodier, F., Modles de Whittaker des representations admissibles des groupes reductives p-adiques quasidploys. Google Scholar
[S] Schmid, W., Representations of semi-simple Lie groups, London Math. Soc. Lecture Notes 34(1979), 185 235.Google Scholar
[Sa] Saito, H., On TunnelVs Theorem on Characters of GL(2). Google Scholar
[Se] Serre, J. P., A course in arithmetic, Springer GTM 7, 1973.Google Scholar
[Sh] Shahidi, F., A proof of Langlands conjecture on Plancherel measures; Complementary series for p-adic groups, Annals of Math. 132(1990), 273 330.Google Scholar
[Sk] Shalika, J., The multiplicity one theoremfor GL(«), Annals of Math. 100(1974), 171 193.Google Scholar
[Ta] Tate, J., Number theoretic background, Proc. of Symposia in Pure Math. (2) 33(1979), 3 26.Google Scholar
[Ta] Tunnell, J., Local epsilon factors and characters of GL(2), Amer. Jour. Math. 105(1983), 1277 1308.Google Scholar
[V] Vogan, D., The local Langlands conjecture. Google Scholar
[W] Waldspurger, J. L., Sur les valeurs de certaines fonctions L automorphes en leur centre de symtrie, Compositio Math. 54(1985), 173 242.Google Scholar
[Z] Zelobenko, D. P., Compact Lie groups and their representations, Translations of Mathematical Monographs, AMS 40(1973). Google Scholar