Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T13:33:58.143Z Has data issue: false hasContentIssue false

On the Changes of Sign of a Certain Error Function

Published online by Cambridge University Press:  20 November 2018

Paul Erdös
Affiliation:
University of Aberdeen
Harold N. Shapiro
Affiliation:
New York University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Though much effort has been expended in studying the mean values of arithmetic functions there is one case which has not yielded a great deal either to elementary or analytic methods. The case to which we refer is that of estimating

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1951

References

1. Bachmann, P., Dit Analytische Zahlentheorie, Zweiter Teil (Leipzig, 1921).Google Scholar
2. Mertens, F., Über einige asymptotische Gesetze der Zahlentheorie, Journal fur die r.u.a. Math., vol. 77 (1874), 289.Google Scholar
3. Hardy, G. H. and Wright, E. M., Theory of Numbers(Oxford, 1938), p. 266.Google Scholar
4. Pillai, S. S. and Chowla, S. D., On the error term in some asymptotic formulae in the theory of numbers (I), Journal of the London Math. Society, vol. 5 (1930), 95101.Google Scholar
5. Sylvester, J. J., Sur le nombre de fractions ordinaires inégales qu'on peut exprimer en se servant de chiffres qui n'excédent pas un nombre donné, Collected Works, vol. IV (Cambridge, 1912), p. 84.Google Scholar
6. Sylvester, J. J., On the number of fractions contained in any Farey scries of which the limiting number is given, Collected Works, vol. IV, pp. 101109.Google Scholar
7. Sarma, M. L. N., On the error term in a certain sum, Proc. Indian Academy of Sciences, Section A, vol. 3 (1931), 338.Google Scholar