Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T13:05:17.370Z Has data issue: false hasContentIssue false

On Tchebycheff Quadrature

Published online by Cambridge University Press:  20 November 2018

Paul Erdös
Affiliation:
University of Alberta, Calgary
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Tchebycheff proposed the problem of finding n + 1 constants A, x1, x2, . . , xn ( — 1 ≤ x1 < x2 < . . . < xn ≤ +1) such that the formula

(1)

is exact for all algebraic polynomials of degree ≤n. In this case it is clear that A = 2/n. Later S. Bernstein (1) proved that for n ≥ 10 not all the xi's can be real. For a history of the problem and for more references see Natanson (4).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1965

References

1. Bernstein, S., Über die Quadraturformeln von Cotes und Tschebyscheff, Dokl. Akad. Nauk, 14 (1937), 323327 (Russian).Google Scholar
2. Erdös, P. and Turán, P., On Interpolation III ﹛Interpolatory Theory of Polynomials), Ann. Math., 41 (3) (1940), 510553.Google Scholar
3. Fejér, L., Mechanische Quadraturen mit Cotesschen Zahlen, Math. Z., 37 (1933), 287310.Google Scholar
4. Natanson, L. P., Konstruktive Funktionentheorie (Berlin, 1955), pp. 466479.Google Scholar