Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T12:32:46.511Z Has data issue: false hasContentIssue false

On Some Diophantine Inequalities Involving the Exponential Function

Published online by Cambridge University Press:  20 November 2018

A. Baker*
Affiliation:
Trinity College, Cambridge, England
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is well known that for any real number θ there are infinitely many positive integers n such that

Here ||a|| denotes the distance of a from the nearest integer, taken positively. Indeed, since ||a|| < 1, this implies more generally that if θ1, θ2, . . . , θk are any real numbers, then there are infinitely many positive integers n such that

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1965

References

1. Baker, A., On an analogue of Littlewood's Diophantine approximation problem, Michigan Math. J., 11 (1964), 247250.Google Scholar
2. Cassels, J. W. S., An introduction to Diophantine approximation (Cambridge, 1957).Google Scholar
3. Cassels, J. W. S., An introduction to the geometry of numbers (Berlin, Göttingen, Heidelberg, 1959).Google Scholar
4. Cassels, J. W. S. and Swinnerton-Dyer, H. P. F., On the product of three homogeneous linear forms and indefinite ternary quadratic forms, Philos. Trans. Roy. Soc. London Ser. A, 248 (1955), 7396.Google Scholar
5. Davenport, H., Note on irregularities of distribution, Mathematika, 5 (1956), 131135.Google Scholar
6. Davenport, H. and Lewis, D. J., An analogue of a problem of Littlewood, Michigan Math. J., 10 (1963), 157160.Google Scholar
7. Gallagher, P., Metric simultaneous Diophantine approximation, J. London Math. Soc, 37 (1962), 387390.Google Scholar
8. Gelfond, A. O., Transcendental and algebraic numbers (New York, 1960).Google Scholar
9. Mahler, K., Zur Approximation der Exponentialfunktion und des Logarithmus, I and II, J. Reine Angew. Math., 166 (1932), 118136, 137-150.Google Scholar
10. Mahler, K., Ein Übertragungsprinzip für lineare Ungleichungen, Časopis Pěst. Mat., 68 (1939), 8592.Google Scholar
11. Popken, J., Zur Transzendenz von e, Math. Z. 29 (1929), 525541.Google Scholar
12. Schneider, Th., Einführung in die transzendenten Zahlen (Berlin, Göttingen, Heidelberg, 1957).Google Scholar
13. Siegel, C. L., Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. (1929), Nr 1.Google Scholar
14. Siegel, C. L., Transcendental numbers (Princeton, 1949).Google Scholar
15. Spencer, D. C., The lattice points of tetrahedra, J. Math. Phys., 21 (1942), 189197.Google Scholar