Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T16:18:09.606Z Has data issue: false hasContentIssue false

On Residues of Intertwining Operators inCases with Prehomogeneous Nilradical

Published online by Cambridge University Press:  20 November 2018

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $\text{P}\,\text{=}\,\text{M}\,\text{N}$ be a Levi decomposition of a maximal parabolic subgroup of a connected reductive group $\text{G}$ over a $p$-adic field $F$. Assume that there exists ${{w}_{0}}\,\in \,G\left( F \right)$ that normalizes $\text{M}$ and conjugates $\text{p}$ to an opposite parabolic subgroup. When $\text{N}$ has a Zariski dense $\text{Int}\,\text{M}$-orbit, $\text{F}$. Shahidi and $\text{X}$. Yu described a certain distribution $D$ on $\text{M}\left( F \right)$, such that, for irreducible unitary supercuspidal representations $\pi $ of $\text{M}\left( F \right)$ with $\pi \,\cong \,\pi \,\circ \,\text{Int}\,{{w}_{0}},\,\text{Ind}_{\text{P}\left( F \right)}^{\text{G}\left( F \right)}\,\pi $ is irreducible if and only if $D\left( f \right)\,\ne \,0$ for some pseudocoefficient $f$ of $\pi $. Since this irreducibility is conjecturally related to $\pi $ arising via transfer from certain twisted endoscopic groups of $\text{M}$, it is of interest to realize $D$ as endoscopic transfer from a simpler distribution on a twisted endoscopic group $\text{H}$ of $\text{M}$. This has been done in many situations where $\text{N}$ is abelian. Here we handle the standard examples in cases where $\text{N}$ is nonabelian but admit a Zariski dense $\text{Int}\,\text{M}$-orbit.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[Artl3] Arthur, J., The endoscopie classification of representations. American Mathematical Society Colloquium Publications, 61. American Mathematical Society, Providence, RI, 2013.http://dx.doi.org/10.1090/coll/061 Google Scholar
[AsgO2] Asgari, M., Local L-functions for split spinor groups. Canad. J. Math. 54(2002), no. 4, 673693.http://dx.doi.org/10.4153/CJM-2002-025-8 Google Scholar
[Ber84] Bernstein, J. N., P-invariant distributions on GL( N) and the classification of unitary representations ofGL(N) (non-Archimedean case). In: Lie group representations, II. Lecture Notes in Math., 1041. Springer, Berlin, 1984, pp. 50102.http://dx.doi.org/10.1007/BFb0073145 Google Scholar
[Beul6] Beuzart-Plessis, R., A short proof of the existence of supercuspidal representations for all reductive p-adic groups. Pacific J. Math. 282(2016), 2734.http://dx.doi.org/10.2140/pjm.2016.282.27 Google Scholar
[Bor79] Borel, A., Automorphic L-functions. In: Automorphic forms, representations and L-functions. Proc. Sympos. Pure Math., XXXIII. Amer. Math. Soc, Providence, R.I., 1979, pp. 2761.Google Scholar
[CX15] Cai, L. and Xu, B., Residues of intertwining operators for (7(3,3) and base change. Int. Math. Res. Not. IMRN (2015), no. 12, 40644096.http://dx.doi.Org/10.1093/imrn/rnu058 Google Scholar
[CM93] Collingwood, D. H. and McGovern, W. M., Nilpotent orbits in semisimple Lie algebras. Van Nostrand Reinhold, New York, 1993.Google Scholar
[FerO7] Ferrari, A., Théorème de l'indice et formule des traces. Manuscripta Math. 124(2007), no. 3, 363390.http://dx.doi.org/10.1007/s00229-007-0130-2 Google Scholar
[GS98] Goldberg, D. and Shahidi, F., On the tempered spectrum of quasi-split classical groups. Duke Math. J. 92(1998), no. 2, 255294.http://dx.doi.org/10.1215/S0012-7094-98-09206-7 Google Scholar
[HC99] Harish-Chandra, , Admissible invariant distributions on reductive p-adic groups. University Lecture Series, 16. American Mathematical Society, Providence, RI, 1999. http://dx.doi.Org/10.1090/ulect/016 Google Scholar
[KS99] Kottwitz, R. E. and Shelstad, D., Foundations of twisted endoscopy. Astérisque (1999), no. 255.Google Scholar
[LS87] Langlands, R. P. and Shelstad, D., On the definition of transfer factors. Math. Ann. 278(1987), no. 1-4,219271.http://dx.doi.org/10.1007/BF01458070 Google Scholar
[LMW15] Lemaire, B., Moeglin, C., and Waldspurger, J.-L., Le lemme fondamental pour l'endoscopie tordue: réduction aux éléments unités. arxiv:1 506.03383,2015. Google Scholar
[LW15] Lemaire, B. and Waldspurger, J.-L., Le lemme fondamental pour l'endoscopie tordue: le cas où le groupe endoscopique non ramifié est un tore. arxiv:1511.08606,2015.Google Scholar
[Lil3] Li., W.-W. On a pairing of Goldberg-Shahidi for even orthogonal groups. Represent. Theory 17(2013), 337381.http://dx.doi.Org/10.1090/S1088-41 65-2013-00435-1 Google Scholar
[Mœgl4] Mœglin, C., Paquets stables des séries discrétes accessibles par endoscopie tordue; leur paramètre de Langlands. In: Automorphic forms and related geometry: assessing the legacy of 1.1. Piatetski-Shapiro. Contemp. Math., 614. American Mathematical Society, Providence, RI, 2014. PP. 295336.Google Scholar
[MS16] Mitra, A. and Spallone, S., A Goldberg-Shahidi pairing for classical groups. arxiv:1601.035812016.Google Scholar
[Rog80] Rogawski., J. D. An application of the building to orbital integrals. Compositio Math. 42(1980/81), no. 3, 417423.Google Scholar
[RR72] Ranga Rao, R., Orbital integrals in reductive groups. Ann. of Math. (2) 96(1972), 505510. http://dx.doi.Org/10.2307/1970822 Google Scholar
[Sha90] Shahidi, F., A proof of Langlands- conjecture on Plancherel measures; complementary series for p-adic groups. Ann. ot Math. (2) 132, no. 2, 273330.http://dx.doi.org/10.2307/1971524 Google Scholar
[Sha92] Shahidi, F. , Twisted endoscopy and reducibility of induced representations for p-adic groups. Duke Math. J. 66(1992), no. 1, 141.http://dx.doi.org/10.1215/S0012-7094-92-06601-4 Google Scholar
[ShaOO] Shahidi, F., Poles of intertwining operators via endoscopy: the connection with prehomogeneous vector spaces. Compositio Math. 120(2000), no. 3, 291325.http://dx.doi.Org/10.1023/A:1002038928169 Google Scholar
[SpaO8] Spallone, S., Residues of intertwining operators for classical groups. Int. Math. Res. Not. IMRN pages Art. ID rnn 056, 37, 2008.http://dx.doi.Org/10.1093/imrn/rnn056 Google Scholar
[Ste68] Steinberg, R., Endomorphisms of linear algebraic groups. Memoirs of the American Mathematical Society, 80. American Mathematical Society, Providence, RI, 1968.Google Scholar
[WalO8] Waldspurger, J.-L. L'endoscopie tordue n'est pas si tordue. Memoirs of the American Mathematical Society 194(2008), no. 908. http://dx.doi.Org/10.1090/memo/0908 Google Scholar
[Wall2] Waldspurger, J.-L., La formule des traces locale tordue. arxiv:1205.1100 Google Scholar
[Wall4] Waldspurger, J.-L., Stabilisation de la formule des traces tordue I: Endoscopie tordue sur un corps local. arxiv:1401.4569 Google Scholar
[Xul5] Xu, B., L-packets ofquasisplit GSp(2n) and GO(2n). arxiv:1503.04897 Google Scholar
[YuO9] Yu, X., Prehomogeneity on quasi-split classical groups and poles of intertwining operators. Canad. J. Math. 61(2009), no. 3, 691707. http://dx.doi.Org/10.41 53/CJM-2009-037-6 Google Scholar
[Yul5] Yu, X., Residues of standard intertwining operators on p-adic classical groups. Forum Math. 28(2015), no. 4, 609648, 2015.Google Scholar