Published online by Cambridge University Press: 20 November 2018
In this paper we shall consider certain rank 3 permutation groups G which act on a set Ω of size n. Thus a point stabiliser Gα will have 3 orbits { α }, △ (α), Γ (α) of sizes 1, k, I respectively. It is well known that, if |G| is even, then the orbital △ defines a strongly regular graph on Ω. In this graph, every point has valency k, every pair of adjacent points are adjacent to a constant number λ of common points, and every pair of non-adjacent points are adjacent to a constant number μ of common points. This notation is reasonably standard (see [4], where much background theory is given).