Published online by Cambridge University Press: 20 November 2018
A nonstandard hull of a TVS (locally convex topological vector space) is a standard TVS constructed from a nonstandard model for [3]. If the nonstandard hulls of a TVS are independent of the non-standard model, we say that the TVS has invariant nonstandard hulls. This is (for complete spaces) the property that every finite element is inflnitesimally close to a standard point. We build on the work of Henson and Moore [4], to show that invariance of nonstandard hulls is a self dual property equivalent to bounded sets being precompact, for F and DF spaces, (see Theorem 4.4).