Article contents
On Functional Properties of Incomplete Gaussian Sums
Published online by Cambridge University Press: 20 November 2018
Abstract
The following special function of two real variables x2 and x1 is considered: and its connections with the incomplete Gaussian sums where ω are intervals of length |ω| ≤1. In particular, it is proved that for each fixed x2 and uniformly in X2 the function H(x2, x1) is of weakly bounded 2-variation in the variable x1 over the period [0, 1]. In terms of the sums W this means that for collections Ω = {ωk}, consisting of nonoverlapping intervals ωk ∪ [0,1) the following estimate is valid: where card denotes the number of elements, and c is an absolute positive constant. The exact value of the best absolute constant к in the estimate (which is due to G. H. Hardy and J. E. Littlewood) is discussed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1991
References
- 11
- Cited by