Published online by Cambridge University Press: 20 November 2018
The class of finite groups G of the form ABA, where A and B are subgroups of G, is of interest since it includes the finite doubly transitive groups, which admit such a representation with A the subgroup fixing a letter and B of order 2. It is natural to ask for conditions on A and B which will imply the solvability of G. It is known that a group of the form AB is solvable if A and B are nilpotent. However, no such general result can be expected for ABA -groups, since the simple groups PSL(2,2n) admit such a representation with A cyclic of order 2n + 1 and B elementary abelian of order 2n. Thus G need not be solvable even if A and B are abelian.
In (3) Herstein and the author have shown that G is solvable if A and B are cyclic of relatively prime orders; and in (2) we have shown that G is solvable if A and B are cyclic and A possesses a normal complement in G.