Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T12:44:34.190Z Has data issue: false hasContentIssue false

On Explicit Bounds In Schottky's Theorem

Published online by Cambridge University Press:  20 November 2018

J. A. Jenkins*
Affiliation:
University of Notre Dame
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Introduction. To Schottky is due the theorem which states that a function F(Z), regular and not taking the values 0 and 1 in |Z| < 1 and for which F(0) = a0, is bounded in absolute value in |Z| ≤ r, 0 ≤ r < 1, by a number depending only on a0 and r. Let K(a0 r) denote the best possible bound in this result. Various authors have dealt with the problem of giving an explicit estimate for this bound.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1955

References

1. Ahlfors, L. V., An extension of Schwarz's Lemma, Trans. Amer. Math. Soc, 43 (1938), 359364.Google Scholar
2. Bohr, H. and Landau, E., Über das Verhalten von ζ(s) und ζK(s) in der Nähe der Geraden σ = 1, Nach. Akad. Wiss. Göttingen, Math.-Phys. Kl., 1910, 303330.Google Scholar
3. Hayman, W. K., Some remarks on Schottky's Theorem, Proc. Cambridge Phil. Soc, 43 (1947), 442454.Google Scholar
4. Ostrowski, A., Asymptotische Abschätzung des absoluten Betrages einer Funktion, die die Werte 0 und 1 nicht annimmt, Comm. Math. Helv., 5 (1933), 5587.Google Scholar
5. Pfluger, A., Über numerische Schranken im Schottky'schen Satz, Comm. Math. Helv., 7 (1934-35), 159170.Google Scholar
6. Robinson, R. M., On numerical bounds in Schottky's Theorem, Bull. Amer. Math. Soc, 45 (1939), 907910.Google Scholar
7. Valiron, G., Complements au théorème de Picard-Julia, Bull. Se Math., 51 (1927), 167183.Google Scholar