Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T10:45:25.237Z Has data issue: false hasContentIssue false

On Discriminants of Binary Quadratic Forms with a Single Class in Each Genus

Published online by Cambridge University Press:  20 November 2018

S. Chowla
Affiliation:
University of Colorado
W. E. Briggs
Affiliation:
University of Colorado
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Consider the classes of positive, primitive binary quadratic forms ax2 + bxy + cy2 of discriminant — Δ = d = b2 − 4ac < 0. Dickson (2, p. 89) lists 101 values of A such that — Δ is a discriminant having a single class in each genus. The largest value given is 7392, and Swift (7) has shown that there are no more up to 107.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1954

References

1. Chowla, S., An extension of Heilbron's class-number theorem, Quart. J. Math., 5 (1934), 304–307.Google Scholar
2. Dickson, L. E., Introduction to the theory of numbers (Chicago, 1929).Google Scholar
3. Landau, E., Handbuch der Lehre von der Verteilung der Primzahlen (Berlin, 1909).Google Scholar
4. Landau, E., Über Imaginär-quadratische Zahlkörper mit gleicher Klassenzahl, Gött. Nachr. (1918), 277–284.Google Scholar
5. Landau, E., Vorlesungen uber Zahlentheorie (New York, 1947).Google Scholar
6. Siegel, C. L., Über die Classenzahl quadratischer Zahlkörper, Acta Arith., 1 (1936), 83–86.Google Scholar
7. Swift, J. D., Note on discriminants of binary quadratic forms with a single class in each genus, Bulletin Amer. Math. Soc, 64 (1948), 560–561.Google Scholar
8. Titchmarsh, E. C., The theory of the Riemann Zeta-Function (Oxford, 1951).Google Scholar