Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T04:36:21.715Z Has data issue: false hasContentIssue false

On Critical Level Sets of Some two Degrees of Freedom Integrable Hamiltonian Systems

Published online by Cambridge University Press:  20 November 2018

Christine Médan*
Affiliation:
Laboratoire de Mathématiques Émile Picard Université Paul Sabatier 118, route de Narbonne 31062 Toulouse France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that all Liouville's tori generic bifurcations of a large class of two degrees of freedom integrable Hamiltonian systems (the so called Jacobi–Moser–Mumford systems) are nondegenerate in the sense of Bott. Thus, for such systems, Fomenko's theory [4] can be applied (we give the example of Gel'fand–Dikii's system). We also check the Bott property for two interesting systems: the Lagrange top and the geodesic flow on an ellipsoid.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1998

References

1. Audin, M., Courbes Algébriques et Systèmes Intégrables: Geodésiques des Quadriques. Expo. Math. 12 (1994), 193226.Google Scholar
2. Bott, R., Nondegenerate Critical Manifolds. Ann. of Math. (2) 60 (1954), 248261.Google Scholar
3. Donagi, R.,Dubrovin, B., Frankel, E. and Previato, E., Integrable systems and quantum groups.Montecatini Terme, 1993. Lecture Notes in Mathematics, 1620.Google Scholar
4. Fomenko, A.T., Integrability and Nonintegrability in Geometry and Mechanics.MIA, Kluwer Academic Publishers, 1988.Google Scholar
5. Fomenko, A.T., Topological Classification of Integrable systems (Ed.: Fomenko, A.T.). Adv. Soviet Math. 6 , 1991.Google Scholar
6. Gavrilor, L., Ouazzani, M., Cabox, R., Bifurcation Diagrams and Fomenko's Surgery on Liouville's Tori of the Kolossoff Potential U = ρ + 1/ρ – k cos ϕ. Ann. Sci. Ecole Norm. Sup 26 (1993), 545564.Google Scholar
7. Gavrilov, L. and Zhivkov, A., The Complex Geometry of Lagrange Top. Preprint 61 of Laboratoire de Mathématiques É. Picard, Université Paul Sabatier - Toulouse III.Google Scholar
8. Lagrange, J.L., Mécanique Analytique, 1788 In: OEuvres de Lagrange, tome XII, Gauthier-Villars, 1889.Google Scholar
9. Médan, C., The Bi-Hamiltonian Structure of the Lagrange Top. Phys. Lett. A 215 (1996), 176180.Google Scholar
10. Mumford, D., Tata Lectures on Theta II. Progr. Math. 43 , Birkhäuser, Boston, MA, 1984.Google Scholar
11. Zung, Nguyen Tien, Singularities of Integrable Geodesic Flows on Multidimentional Torus and Sphere. J. Geom. Phys. 18 (1996), 147162.Google Scholar
12. Plakoo, J., Gel’fand-Dikii's System Revisited. J. Geom. Phys. 21 (1996), 4354.Google Scholar
13. Vanhaecke, P., Integrable Systems and Symetric Products of Curves. Preprint.Google Scholar