Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T09:43:25.409Z Has data issue: false hasContentIssue false

On Connections Of Cartan

Published online by Cambridge University Press:  20 November 2018

Shôshichi Kobayashi*
Affiliation:
University of Washington, Seattle
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Introduction. Consider a differentiable manifold M and the tangent bundle T(M) over M, the structure group of which is usually the general linear group G'. Let P' be the principal fibre bundle associated with T(M). Consider the fibre F of T(M) as an affine space, then we have acting on F the affine transformation group G, which contains G' as the isotropic subgroup.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1956

References

1. Ambrose, W. and Singer, I. M., A theorem on holonomy, Trans. Amer. Math. Soc. 75 (1953), 428443.Google Scholar
2. Chevalley, C., Theory of Lie groups (Princeton, 1946).Google Scholar
3. Ehresmann, C., Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie (Bruxelles, 1950).Google Scholar
4. Kobayashi, S., Le groupe des transformations qui laissent invariant le parallélisme, Colloque de Topologie (Strasbourg, 1954).Google Scholar
5. Kobayashi, S., Espaces à connexion de Cartan complets, Proc. Jap. Acad. 30 (1954), 709710.Google Scholar
6. Kobayashi, S., Espaces à connexions affines et riemanniennes symétriques, Nagoya Math.]., 9 (1955) 2527.Google Scholar
7. Kobayashi, S. and Nomizu, K., Curvature, torsion and holonomy (unpublished).Google Scholar
8. Nomizu, K., Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 3365.Google Scholar
9. Steenrod, N., The topology of fibre bundles (Princeton, 1951).Google Scholar