Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T11:40:03.975Z Has data issue: false hasContentIssue false

On an Inequality of S. Bernstein

Published online by Cambridge University Press:  20 November 2018

C. Frappier
Affiliation:
Université de Montréal, Montréal, Québec
Q. I. Rahman
Affiliation:
Université de Montréal, Montréal, Québec
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R > 1 and denote by R the ellipse

(1)

If Pn is a polynomial of degree at most n such that

(2)

then ([2]; also see [13, p. 337] and [9, p. 158, Prob. No. 270])

(3)

The standard proof of this well known result runs as follows. The function

(4)

is entire and in view of (2) we have

Hence by the maximum modulus principle

(5)

which is clearly equivalent to (3).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1982

References

References>

1. Ankeny, N. C. and Rivlin, T. J., On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849852.Google Scholar
2. Bernstein, S., Sur une propriété des polynômes, Comm. de la Soc. Math, de Kharkow 14 (1914).Google Scholar
3. Copson, E. T., An introduction to the theory of functions of a complex variable (Oxford University Press, Oxford, 1935).Google Scholar
4. J. G., van der Corput and Visser, C., Inequalities concerning polynomials and trigonometric polynomials, Nederl. Akad. Wetensch. Proc. 49, 383-392 = Indag. Math. 8 (1946), 238247.Google Scholar
5. Dewan, K. K., Extremal properties and coefficient estimates for polynomials with restricted zeros and on location of zeros of polynomials, Ph.D. Thesis, Indian Institute of Technology, Delhi (1980).Google Scholar
6. Duffin, R. J. and Schaeffer, A. C., Some properties of functions of exponential type, Bull. Amer. Math. Soc. U (1938), 236240.Google Scholar
7. P., Erdôs, Some remarks on polynomials, Bull. Amer. Math. Soc. 53 (1947), 11691176.Google Scholar
8. Govil, N. K., Jain, V. K. and Labelle, G., Inequalities for polynomials satisfying p(z) = znp(l/z), Proc. Amer. Math. Soc. 57 (1976), 238242.Google Scholar
9. G., Pôlya and G., Szegô, Problems and theorems in analysis, Vol. I. (Springer-Verlag, Berlin-Heidelberg, 1972).Google Scholar
10. Rahman, Q. I., Applications of functional analysis to extremal problems for polynomials, Les Presses de l'Université de Montréal (1968).Google Scholar
11. Rahman, Q. I., Functions of exponential type, Trans. Amer. Math. Soc. 135 (1969), 295309.Google Scholar
12. Rahman, Q. I., Some inequalities for polynomials, Proc. Amer. Math. Soc. 56 (1976), 255–230.Google Scholar
13. Riesz, M., Ûber einen Satz des Herrn Serge Bernstein, Acta Math. 40 (1916), 337347.Google Scholar
14. Visser, C., A simple proof of certain inequalities concerning polynomials, Nederl. Akad. Wetensch. Proc. 47, 276-281 - Indag. Math. 7 (1945), 8186.Google Scholar
15. Voronovskaja, E. V. and Zinger, M. J., An estimate for polynomials in the complex plane (Russian), Dokl. Akad. Nauk SSSR 143 (1962), 10221025. Trans. Soviet Math. Dokl. 3, 516-520.Google Scholar
16. Zinger, M. J., Functionals of derivatives in the complex plane (Russian), Dokl. Akad. Nauk SSSR 166 (1966), 775778. Trans. Soviet Math. Dokl. 7, 158-161.Google Scholar