No CrossRef data available.
Article contents
On a Transcendence Problem of K. Mahler
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
K. Mahler [8] has proposed the following problem. Let Ωr for r ≧ 1 be a sequence of n X n non-negative rational integer matrices. Each Ωr — (ωrij) defines a map Ωr : Cn —⟶ Cn by
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1977
References
1.
Kubota, K. K., On the algebraic independence of holomorphic solutions of certain functional equations and their values, to appear, Math. Ann.Google Scholar
3.
Lang, S., Introduction to transcendental numbers (Addison-Wesley, Reading, Mass., 1966).Google Scholar
4.
Loxton, J. H. and A. J. van der Poorten, Arithmetic properties of certain functions in several variables I, II, III, to appear.Google Scholar
5.
Transcendence and algebraic independence by a method of Mahler, to appear in Advances in Transcendence Theory.Google Scholar
6.
Mahler, K., Arithmetische Eigenschaften der Lbsun gen einer Klasse von Funktionalgleichungen,
Math. Ann. 101 (1929), 342–366.Google Scholar
7.
Mahler, K.
Tiber das Verschwinden von Potenzreihen mehrerer Verdnderlichen im speziellen Punktfolgen,
Math. Ann. 103 (1930), 573–587.Google Scholar
You have
Access