Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T09:23:21.697Z Has data issue: false hasContentIssue false

On A Class of Operators Occurring in the Theory of Chains of Infinite Order

Published online by Cambridge University Press:  20 November 2018

C. Ionescu Tulcea*
Affiliation:
Yale University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let T, E be two sets and I ⊂ β(T),l, ⊂ β (E) two tribes. For every n ∈ N* denote by En the product E{1....,n} and by the tribe. For every x ∈ E let ux be a mapping of T into T. For x = (x1,… , xn) ∈ ∈En define ux = uxo … oxl and suppose that {(t, xi1, …, xn) ∣u(x1.....,xn)(t) ∈ A} .

Let m be the Banach space of functions defined on T, real-valued, bounded and I measurable with norm

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1959

References

1. Blanc-Lapièrre, A. et Fortet, R., Théorie des fonctions aléatoires (Paris, 1953).Google Scholar
2. Ciucu, G., Propriétés asymptotiques des chaînes à liaisons complètes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fiz. Nat. (8), 22 (1957), 1115.Google Scholar
3. Doeblin, W., Remarque sur la théorie métrique des fractions continues, Compositio Math. 7 (1940), 353-71.Google Scholar
4. Doeblin, W. et Fortet, R., Sur les chaînes à liaisons complètes, Bull. Soc. Math. France, 65 (1937), 132-48.Google Scholar
5. Doob, J. L., Stochastic processes (New York, 1953).Google Scholar
6. Fortet, R., Sur l’itération des substitutions algébriques linéaires à une infinité de variables et ses applications à la théorie des probabilités en chaîne, Revista de Ciencias (Lima, Peru, 1938).Google Scholar
7. Fortet, R., Sur une suite également répartie, Studia Math. 9, (1940), 5770.Google Scholar
8. Harris, T. E., On chains of infinite order, Pacific J. Math., 5 (1955), 707–24.Google Scholar
9. Karlin, S., Some random walks arising in learning models I, Pacific J. Math., 3 (1953) 725-56.Google Scholar
10. Kennedy, Maurice, A convergence theorem for a certain class of Markoff processes, Pacific J. Math., 7 (1957), 1107-24.Google Scholar
11. Krein, M. G. and Rutman, M. A., Linear operators leaving invariant a cone in a Banach space, Uspehi Matem. Nauk (N.S.) (3), 23 (1948), 395, (Amer. Math. Soc. Translation, 26).Google Scholar
12. Ionescu Tulcea, C. T. et Marinescu, G., Sur certaines chaînes à liaisons complètes, C.R.Acad. Sci. Paris, 227 (1948), 667-9.Google Scholar
13. Ionescu Tulcea, C. T. et Marinescu, G., Théorie ergodique pour des classes d'opérations non complètement continues, Ann. Math., 52 (1950), 140-7.Google Scholar
14. Onicescu, O., Théorie générale des chaînes à liaisons complètes, Act. Sci. Ind., 737 (Paris, 1938), 2941.Google Scholar
15. Onicescu, O. et Mihoc, G., Sur les chaînes de variables statistiques, Bull. Sci. Math., 59 (1935), 174-92.Google Scholar
16. Yosida, K. and Kakutani, S., Operator theoretical treatment of Markoff process and the mean ergodic theorem, Ann. Math. 42 (1941), 188228.Google Scholar