Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T08:17:27.251Z Has data issue: false hasContentIssue false

Old and New Results on Knots

Published online by Cambridge University Press:  20 November 2018

Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The theory of knots undertakes the task of giving a complete survey of all existing knots. A solid mathematical foundation was not laid to this theory until our century. A mathematician of the rank of Felix Klein thought it to be nearly hopeless to treat knot problems with the same exactness as we are accustomed to from classical mathematics. We want to give here a short summary of the modern topological methods enabling us to approach the knot problem in a mathematical way.

In order to exclude pathological knots, as for instance knots being entangled an infinite number of times, we will define a knot as a polygon lying in the space. In other words: a knot is a closed sequence of segments without double points. In Figure 1 some examples of knots are given in plane projection.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1950

References

[1] Alexander, J. W., “Topological Invariants of Knots and Links,” Trans. Amer. Math. Soc, vol. 30 (1928), 275306.Google Scholar
[2] Alexander, J. W. and Briggs, C., “On Types of Knotted Curves,” Ann. of Math., vol.28 (1926/27), 562586.Google Scholar
[3] Burau, W., “ Kennzeichnung der Schlauchknoten,” Abh. Math. Sent. Hamburg Univ., vol. 9 (1932), 125133.Google Scholar
[4] Dehn, M., “Über die Topologie des dreidimensionalen Raumes,”Math. Ann., vol. 69 (1910), 137-168; “Die beiden Kleeblattschlingen,” Math. Ann., vol. 75 (1914).Google Scholar
[5] Goeritz, L. “Knoten und quadratische Formen,” Math. Zeit., vol. 36 (1933), 647654.Google Scholar
[6] Graeub, W., Semilineare Abbildungen—to appear in Sitz. Ber. Ak. d. Wissensch., Heidelberg.Google Scholar
[7] Reidemeister, K., Knotentheorie, Berlin, 1932 (Erg. d. Math., vol. 1).Google Scholar
[8] Schubert, H., “Die eindeutige Zerlegbarkeit eines Knotens in Primknoten,” Sitz. Ber. Ak. d. Wissensch, Heidelberg (1949).Google Scholar
[9] Seifert, H., “Über das Geschlecht von Knoten,” Math. Ann., vol. 110 (1934).Google Scholar
[10] Seifert, H., “Die Verschlingungsinvarianten der cyklischen Knotenüberlagerungen,” Abh. Math. Sem. Hamburg Univ., vol. 11 (1935).Google Scholar
[11] Seifert, H., “Schlingknoten,” Math. Zeit., vol. 52 (1949), 6280.Google Scholar
[12] Seifert, H., Über die L-Polynome einer speziellen Klasse von Knoten—to appear in Quart. J. Math. Google Scholar
[13] Threlfall, W., Knotengruppe und Homologieinvarianten—to appear in Sitz. Ber. Ak. d. Wissensch., Heidelberg.Google Scholar
[14] Whitehead, J. H. C., “On Doubled Knots,” London Math. Soc, vol. 12 (1937), 6371.Google Scholar