No CrossRef data available.
Article contents
A Note on a Class of Slit Conformal Mappings
Published online by Cambridge University Press: 20 November 2018
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We denote by 5 the class of functions, f(z), that are analytic and univalent in U = ﹛z: |z| < 1﹜ and have the normalization
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1978
References
1.
Aksent'ev, L. A., Application of the argument principle to the study of schlichtness conditions II, Izv. Vyss. Ucebn. Zaved, Matematika No. 12 (1969), 3.15.Google Scholar
2.
Avkhacliev, F. G. and Aksent'ev, L. A., The main results on sufficient conditions for an analytic function to be schlicht,
Russian Math. Surveys
30:4 (1975), 1–64.Google Scholar
3.
Brickman, L., Extreme points of the set of univalent functions, Bull. Amer. Math. Soc. 70 (1970), 372–374.Google Scholar
4.
Brickman, L. and Wilken, D., Support points of the set of univalent functions, Proc. Amer. Math. Soc. 42 (1974), 523–528.Google Scholar
5.
Brickman, L. and Wilken, D., XV. Hengartner and Schober, G., Extreme points for univalent functions, Trans. Amer. Math. Soc. 185 (1973), 265–270.Google Scholar
6.
Brickman, L. and Wilken, D., XV. Hengartner and Schober, G., Some new properties of support points for compact families of univalent functions in the unit disc, Mich. Math. J. 23 (1976), 207–216.Google Scholar
7.
Lowner, K., Untersuchungen iiber schlicte konforme abbildungen des Einheitskresses, Math. Ann. 89, 102–121.Google Scholar
8.
Markushevich, A. I., Theory of functions of a complex variable, Vol. II (Prentice Hall, Englewood Cliffs, New Jersey, 1965).Google Scholar
9.
Pfluger, A., Linear Extremal problems bei schlichten Functionen, Ann. Acad. Sci. Fenn. Ser. AI 489 (1971).Google Scholar
10.
Pommerenke, Chr., Uber die Subordination analytischer Functionen, J. Reine Angew. Math. 218 (1965), 159–173.Google Scholar
You have
Access