Published online by Cambridge University Press: 20 November 2018
In this paper we estimate the $\left( {{L}^{p}}-{{L}^{2}} \right)$-norm of the complex harmonic projectors $\pi \ell {\ell }',\,1\le p\le 2$, uniformly with respect to the indexes $\ell,{\ell}'$. We provide sharp estimates both for the projectors ${{\pi }_{\ell{\ell}'}}$, when $\ell,{\ell}'$ belong to a proper angular sector in $\mathbb{N}\,\times \,\mathbb{N}$, and for the projectors ${{\pi }_{\ell0}}$ and ${{\pi }_{0\ell}}$. The proof is based on an extension of a complex interpolation argument by C. Sogge. In the appendix, we prove in a direct way the uniform boundedness of a particular zonal kernel in the ${{L}^{1}}$ norm on the unit sphere of ${{\mathbb{R}}^{2n}}$.