Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T00:45:11.020Z Has data issue: false hasContentIssue false

Normal Operators on the Banach Space Lp(-∞,∞). Part I

Published online by Cambridge University Press:  20 November 2018

Gregers L. Krabbe*
Affiliation:
Purdue University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let be the Boolean algebra of all finite unions of subcells of the plane. Denote by εpthe algebra of all linear bounded transformations of Lp(— ∞, ∞) into itself. Suppose for a moment that p = 2, and let Rp be an involutive abelian subalgebra of εp if Rp is also a Banach space and if Tp ∈ Rp, then:

(i) The family of all homomorphic mappings of into the algebra Rp contains a member EPT such that

(1)

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1961

References

1. Dunford, N., A survey of the theory of spectral operators, Bull. Amer. Math. Soc, 64 (1958), 217274.Google Scholar
2. Dunford, N., Spectral theory in abstract spaces and Banach algebras, Proceedings of the symposium on spectral theory and differential problems (Stillwater, Oklahoma, 1955), 165.Google Scholar
3. Hille, E., On the generation of semi-groups and the theory of conjugate functions, Kungl. Fysiogr. Sâllsk. Lund Fôrhandlinger, 21 (1952), 113.Google Scholar
4. Hille, E. and Phillips, R. S., Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publ., XXXI (1957).Google Scholar
5. Kelley, J. L., General topology (D. Van Nostrand Co., Inc., New York, 1955).Google Scholar
6. Kober, H., On Dirichlefs singular integral, Quart. J. Math. Oxford, 11 (1940), 6680.Google Scholar
7. Krabbe, G. L., Convolution operators that satisfy the spectral theorem, Math. Zeitschr., 70 (1959), 446462.Google Scholar
8. Krabbe, G. L., A space of multipliers of type Lp (—∞ ∞), pac. J. Math., 9 (1959), 729737.Google Scholar
9. Spectral invariance of convolution operators on Lp (—∞ ∞), Duke Math., 25 (1958), 131141.Google Scholar
10. Neumark, M. A., Involutive Algebren, Sowjetische Arbeiten zur Funktion-analysis (Berlin 1954), 91-191; translated from the article Kol'ca c involyucieï, Usp. Mat. Nauk, 3 (1948), 52145.Google Scholar
11. Titchmarsh, E. C., Introduction to the theory of Fourier integrals (Oxford University Press, 1948).Google Scholar
12. Varsavsky, O. A., Sobre la transformacion de Hilbert, Revista Union Mat. Argentina, 14 (1949), 2037.Google Scholar