Published online by Cambridge University Press: 20 November 2018
A non-Hausdorff Ascoli theorem for continuous functions was established in [6]. The present purpose is to extend this result to point-compact continuous multifunction, using Levine's generalization for closed subsets [12]. The paper is organized as follows: the object of section 2 is to establish the necessary multifunction lemmas and to introduce the notion of a Tychonoff set; section 3 generalizes to multifunction context the partial exponential law of R. H. Fox [9, p. 430], and establishes a special exponential law for multifunctions; section 4 concerns the crucial properties of even continuity for multifunctions, introduced in [8]; the main theorem of the paper is established in section 5.