Article contents
Non-Existence of Ramanujan Congruences in Modular Forms of Level Four
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Ramanujan famously found congruences like $p(5n\,+\,4)\,\equiv \,0$ mod 5 for the partition function. We provide a method to find all simple congruences of this type in the coefficients of the inverse of a modular form on ${{\Gamma }_{1}}(4)$ that is non-vanishing on the upper half plane. This is applied to answer open questions about the (non)-existence of congruences in the generating functions for overpartitions, crank differences, and 2-colored $F$-partitions.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2011
References
[1]
Ahlgren, S. and M. Boylan, Arithmetic properties of the partition function. Invent. Math. 153(2003), no. 3, 487–502. doi:10.1007/s00222-003-0295-6Google Scholar
[2]
Ahlgren, S., D. Choi, and J. Rouse, Congruences for level four cusp forms. Math. Res. Lett. 16(2009), no. 4, 683–701.Google Scholar
[3]
Andrews, G. E., Generalized Frobenius partitions. Mem. Amer. Math. Soc. 49(1984), 1–44.Google Scholar
[4]
L, A. O.. Atkin and F. G. Garvan, Relations between the ranks and cranks of partitions. Ramanujan J. 7(2003), no. 1–3, 343–366. doi:10.1023/A:1026219901284Google Scholar
[5]
Boylan, M., Exceptional congruences for powers of the partition function. Acta Arith. 111(2004), no. 2, 187–203. doi:10.4064/aa111-2-7Google Scholar
[6]
Choi, D., S.-Y. Kang, and J. Lovejoy, Partitions weighted by the parity of the crank. J. Combin. Theory Ser. A 116(2009), no. 5, 1034–1046. doi:10.1016/j.jcta.2009.02.002Google Scholar
[7]
Corteel, S. and J. Lovejoy, Overpartitions. Trans. Amer. Math. Soc. 356(2004), no. 4, 1623–1635. doi:10.1090/S0002-9947-03-03328-2Google Scholar
[8]
Eichhorn, D. and J. A. Sellers, Computational proofs of congruences for 2-colored Frobenius partitions. Int. J. Math. Math. Sci. 29(2002), no. 6, 333–340. doi:10.1155/S0161171202007342Google Scholar
[9]
Gross, B. H., A tameness criterion for Galois representations associated to modular forms (mod p). Duke Math. J. 61(1990), no. 2, 445–517. doi:10.1215/S0012-7094-90-06119-8Google Scholar
[10]
Jochnowitz, N., A study of the local components of the Hecke algebra mod l. Trans. Amer. Math. Soc. 270(1982), no. 1, 253–267.Google Scholar
[12]
Kiming, I. and J. B. Olsson, Congruences like Ramanujan's for powers of the partition function. Arch. Math. (Basel) 59(1992), no. 4, 348–360.Google Scholar
[13]
Lovejoy, J., Ramanujan-type congruences for three colored Frobenius partitions. J. Number Theory 85(2000), no. 2, 283–290. doi:10.1006/jnth.2000.2546Google Scholar
[14]
Mahlburg, K., Partition congruences and the Andrews-Garvan-Dyson crank. Proc. Natl. Acad. Sci. USA 102(2005), no. 43, 15373–15376. doi:10.1073/pnas.0506702102Google Scholar
[15]
Mahlburg, K., The overpartition function modulo small powers of 2. Discrete Math. 286(2004), no. 3, 263–267. doi:10.1016/j.disc.2004.03.014Google Scholar
[16]
Ono, K., The web of modularity: arithmetic of the coefficients of modular forms and q-series. CBMS Regional Conference Series in Mathematics, 102, Conference Board of the Mathematical Sciences, Washington, DC; American Mathematical Society, Providence, RI, 2004.Google Scholar
[17]
Ono, K., Distribution of the partition function modulo m. Ann. of Math. (2) 151(2000), no. 1, 293–307. doi:10.2307/121118Google Scholar
[18]
Ono, K., Congruences for Frobenius partitions. J. Number Theory 57(1996), no. 1, 170–180. doi:10.1006/jnth.1996.0041Google Scholar
[19]
Paule, P. and S. Radu, A proof of Seller's conjecture. RISC. Technical report no. 09-17, 2009.Google Scholar
[20]
Sinick, J., Ramanujan Congruences for a class of eta quotients. Int. J. Number Theory 6(2010), no. 4, 835–847.Google Scholar
[21]
Sturm, J.. On the congruence of modular forms. In: Number theory (New York, 1984–1985), Lecture Notes in Math., 1240, Springer, Berlin, 1987, pp. 275–280.Google Scholar
[22]
F, H. P.. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms. In: Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Lecture Notes in Math., 350, Springer, Berlin, 1973, pp. 1–55.Google Scholar
[23]
Tupan, A., Congruences for 1(4)-modular forms of half-integral weight. Ramanujan J. 11(2006), no. 2, 165–173. doi:10.1007/s11139-006-6505-2Google Scholar
You have
Access
- 8
- Cited by