Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T01:43:47.934Z Has data issue: false hasContentIssue false

Metrization of Topological Spaces

Published online by Cambridge University Press:  20 November 2018

R. H. Bing*
Affiliation:
University of Virginia and University of Wisconsin
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A single valued function D(x, y) is a metric for a topological space provided that for points x, y, z of the space:

1. D(x, y) ≽ 0, the equality holding if and only if x = y,

2. D(x, y) = D(y, x) (symmetry),

3. D(x, y) + D(y, z)D(x, z) (triangle inequality),

4. x belongs to the closure of the set M if and only if D(x, m) (m element of M) is not bounded from 0 (preserves limit points).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1951

References

[1] Alexandroff, P. and Urysohn, P., Une condition nécessaire et suffisante pour qu'une classe (L) soit une classe (B), Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, vol. 177 (1923), 12741276.Google Scholar
[2] Bing, R. H., Extending a Metric, Duke Math. J., vol. 14 (1947), 511519.Google Scholar
[3] Chittenden, E. W., On the metrization problem and related problems in the theory of abstract sets, Bull. Amer. Math. Soc, vol. 33 (1927), 1334.Google Scholar
[4] Jones, F. B., Concerning normal and completely normal spaces, Bull. Amer. Math. Soc., vol. 43 (1937), 671679.Google Scholar
[5] Moore, R. L., Foundations of Point Set Theory, Amer. Math. Soc. Colloquium Publications, vol. 13, New York, 1932.Google Scholar
[6] Stone, A. H., Paracompactness and product spaces, Bull. Amer. Math. Soc. vol. 54 (1948), 977982.Google Scholar
[7] Tychonoff, A., Über einen Metrisationssatz von P. Urysohn, Math. Ann., vol. 95 (1926), 139142.Google Scholar
[8] Urysohn, P., Zum Metrisationsproblem,Math. Ann., vol. 94 (1925), 309315.Google Scholar
[9] Urysohn, P., Über die Machtigkeit der zusammenhdngenden Mengen, Math. Ann., vol. 94 (1925), 262295.Google Scholar
[10] Whyburn, G. T., Analytic Topology, Amer. Math. Soc. Colloquium Publications, vol. 28, New York, 1942.Google Scholar