Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T14:41:22.083Z Has data issue: false hasContentIssue false

Metamathematical Considerations On The Relative Irreducibility Of Polynomials

Published online by Cambridge University Press:  20 November 2018

P. C. Gilmore
Affiliation:
Pennsylvania State College
A. Robinson
Affiliation:
University of Toronto
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Introduction. In this paper, infinite fields K will be discussed which satisfy the following condition :

CONDITION C: for any polynomial p(t, x) in x, coefficients in K(t), t transcendental with respect to K, which has no zeros in K (t), there is a t* in K for which p(t*, x) has no zeros in K.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1955

References

1. Dörge, K., Zum Hilbertschen Irreduzibilitätssatz, Math. Ann., 95 (1926), 8497.Google Scholar
2. Franz, W., Untersuchungen zum Hilbertschen Irreduzibilitätssatz, Math. Z., 33 (1931), 275293.Google Scholar
3. L. Henkin, , Some interconnections between modern algebra and mathematical logic. Trans. Amer. Math. Soc, 74 (1953), 410427.Google Scholar
4. Inaba, E., Ueber den Hilbertschen Irreduzibilitätssatz, Japanese J. Math., 19 (1944), 125.Google Scholar
5. Robinson, A., On the metamathematics of algebra (Amsterdam, North-Holland, 1951).Google Scholar
6. Robinson, A., Les rapports entre le calcul déductif et Vinterprétation sémantique d'un système axiomatique: Les méthodes formelles en axiomatique (Colloques Internationaux du Centre National de la Recherche Scientifique, no. 36, Paris, 1950).Google Scholar
7. van der Waerden, B. L., Modern algebra, vol. 1 (New York, F. Ungar, 1949).Google Scholar