Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T09:17:10.789Z Has data issue: false hasContentIssue false

Meromorphic Functions Sharing the Same Zeros and Poles

Published online by Cambridge University Press:  20 November 2018

Günter Frank
Affiliation:
Technische Universität Berlin, Fachbereich 3 Mathematik, 10623 Berlin, Germany e-mail: [email protected]
Xinhou Hua
Affiliation:
Department of Mathematics and Statistics, University of Ottawa, Ottawa, K1N 6N5 e-mail: [email protected]
Rémi Vaillancourt
Affiliation:
Department of Mathematics and Statistics, University of Ottawa, Ottawa, K1N 6N5 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, Hinkkanen's problem (1984) is completely solved, i.e., it is shown that any meromorphic function $f$ is determined by its zeros and poles and the zeros of ${{f}^{\left( j \right)}}$ for $j=1,2,3,4$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2004

References

[1] Barth, K.F., Brannan, D.A. and Hayman, W.K., Research problems in complex analysis. Bull. London Math. Soc. 16(1984), 490517.Google Scholar
[2] Chuang, C.T., Sur la comparaison de la croissance d'une fonction méromorphe et de celle de sa dérivée. Bull. Sci. Math. 75(1951), 171190.Google Scholar
[3] Clunie, J., On integral and meromorphic functions. J. LondonMath. Soc. 37(1962), 1727.Google Scholar
[4] Frank, G. and Hennekemper, W., Einige Ergebnisse über dieWerteverteilung meromorpher Funktionen und ihrer Ableitungen. Resultate Math. 4(1981), 3954.Google Scholar
[5] Frank, G., Hua, X.H. and Vaillancourt, R., Fonctions méromorphes aux zéroes et pôles communs / Meromorphic functions sharing the same zeroes and poles. C. R. Acad. Sci. Paris, Ser. I. 338(2004), 763768.Google Scholar
[6] Gross, F., Factorization of meromorphic funcions. U.S. Government Printing Office, Washington DC, 1972.Google Scholar
[7] Gundersen, G.G.,When two entire functions and also their first derivatives have the same zeros. Indiana Univ.Math. J. 30(1981), 293303.Google Scholar
[8] Hayman, W.K., Meromorphic functions, Oxford at the Clarendon Press, 1964.Google Scholar
[9] Hua, X.H., Some extensions of the Tumura–Clunie theorem. Complex Variables 16(1991), 6977.Google Scholar
[10] Köhler, L.,Meromorphic functions sharing zeros and poles and also some of their derivatives sharing zeros. Complex Variables 11(1989), 3948.Google Scholar
[11] Laine, I., Nevanlinna theory and complex differential equations. de Gruyter, Berlin, 1993.Google Scholar
[12] Nevanlinna, R., Analytic functions. Springer-Verlag, New York, 1970.Google Scholar
[13] Tohge, K., On a problem of Hinkkanen about Hadamard products. KodaiMath. J. 13(1990), 101120.Google Scholar
[14] Yang, C.C., On two entire functions which together with their first derivatives have the same zeros. J. Math. Anal. Appl. 56(1976), 16.Google Scholar