Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T08:45:10.543Z Has data issue: false hasContentIssue false

Matrices Doubly Stochastic by Blocks

Published online by Cambridge University Press:  20 November 2018

Pal Fischer
Affiliation:
University of Guelph, Guelph, Ontario
John A. R. Holbrook
Affiliation:
University of Guelph, Guelph, Ontario
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present work stems from the following classical result, due to G. H. Hardy, J. E. Littlewood, G. Pólya [7], and R. Rado [10].

THEOREM 1. Concerning a pair of n-tuples x, y ϵ Rn, the following four statementsare equivalent:

(a) for every continuous, convex function f : R → R

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

1. Blackwell, D., Equivalent comparisons of experiments, Ann. Math. Stat. 24 (1953), 265272.Google Scholar
2. Chong, K. M., Variation reducing properties of decreasing rearrangements, Can. J. Math. 27 (1975), 330336.Google Scholar
3. Chong, K. M. An induction theorem for rearrangements, Can. J. Math. 28 (1976), 154160.Google Scholar
4. Duff, G. F. D., Differences, derivatives, and decreasing rearrangements, Can. J. Math. 19 (1967), 11531178.Google Scholar
5. Duff, G. F. D. Integral inequalities for equimeasurable rearrangements, Can. J. Math. 22 (1970), 408430.Google Scholar
6. Garsia, A. M., Combinatorial inequalities and smoothness of functions, Bull. Amer. Math. Soc. 82 (1976), 157170.Google Scholar
7. Hardy, G. H., Littlewood, J. E., and Polya, G., Inequalities, 2nd edition (Cambridge U.P., 1952).Google Scholar
8. Mirsky, L., On a convex set of matrices, Archiv. der Math. 10 (1959), 8892.Google Scholar
9. Pôlya, G., Remark on WeyVs note: Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. 36 (1950), 4951.Google Scholar
10. Rado, R., An inequality, J. London Math. Soc. 27 (1952), 16.Google Scholar
11. Schur, I., Uber eine Klasse von Mittelbildungen mit Anwendungen aufdie Determinantentheorie, Sitzungsber. d. Berl. Math. Gesellsch. 22 (1923), 920.Google Scholar
12. Sherman, S., On a theorem of Hardy, Littlewood, Pôlya, and Blackwell, Proc. Nat. Acad. Sci. 37 (1951), 826831.Google Scholar