Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T01:58:07.868Z Has data issue: false hasContentIssue false

A $\mathcal {C}^k$-seeley-extension-theorem for Bastiani’s differential calculus

Published online by Cambridge University Press:  20 October 2021

Maximilian Hanusch*
Affiliation:
Institut für Mathematik, Universität Paderborn, Paderborn, Germany

Abstract

We generalize a classical extension result by Seeley in the context of Bastiani’s differential calculus to infinite dimensions. The construction follows Seeley’s original approach, but is significantly more involved as not only $C^k$ -maps (for ) on (subsets of) half spaces are extended, but also continuous extensions of their differentials to some given piece of boundary of the domains under consideration. A further feature of the generalization is that we construct families of extension operators (instead of only one single extension operator) that fulfill certain compatibility (and continuity) conditions. Various applications are discussed as well.

Type
Article
Copyright
© Canadian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alzaareer, H. and Schmeding, A., Differentiable mappings on products with different degrees of differentiability in the two factors . Expo. Math. 33(2015), 184222.CrossRefGoogle Scholar
Frerick, L., Extension operators for spaces of infinite differentiable Whitney jets . J. Reine Angew. Math. 602(2007), 123154.Google Scholar
Glöckner, H., Infinite-dimensional Lie groups without completeness restrictions . In: Aleksander Strasburger, Joachim Hilgert, Karl-Hermann Neeb and Wojciech Wojtyński (eds.) Geometry and analysis on finite- and infinite-dimensional Lie groups (B dlewo 2000), Banach Center Publications, 55, Polish Academy of Sciences, Warsaw, 2002, pp. 4359.Google Scholar
Hamilton, R., The inverse function theorem of Nash and Moser . Bull. Amer. Math. Soc. (N.S.) 7(1982), no. 1, 65222.CrossRefGoogle Scholar
Hanusch, M., Regularity of Lie groups. Preprint, 2018. arXiv:1711.03508v2 [math.FA].Google Scholar
Hjelle, E. O. and Schmeding, A., Strong topologies for spaces of smoothmaps with infinite-dimensional target . Expo. Math. 35(2017), no. 1, 1353.Google Scholar
Kriegl, A. and Michor, P. W., The convenient setting of global analysis, Mathematical Surveys and Monographs, 53, American Mathematical Society, Providence, 1997.CrossRefGoogle Scholar
Margalef-Roig, J. and Outerelo Dominguez, E., Differential topology, North-Holland, Amsterdam, 1992.Google Scholar
Meise, R. and Vogt, D., Introduction to functional analysis, Oxford Graduate Texts in Mathematics, 2, Oxford University, New York, 1997.Google Scholar
Michor, P. W., Manifolds of differentiable mappings, Shiva Mathematics Series, 3, Shiva Publishing Ltd., Nantwich, 1980.Google Scholar
Michor, P. W., Manifolds of mappings for continuum mechanics . In: Segev, R. and Epstein, M. (eds.), Geometric continuum mechanics. Vol 42, Birkhäuser, Cham, 2020, pp. 375; Preprint, 2019. arXiv:1909.00445 [math.DG].CrossRefGoogle Scholar
Milnor, J.. Remarks on infinite-dimensional Lie groups . In: Bryce S. Dewitt and Raymond Stora (eds.) Relativity, groups and topology. II (Les Houches 1983), North-Holland, Amsterdam, 1984, pp. 10071057.Google Scholar
Neeb, K.-H., Infinite-dimensional groups and their representations . In: Alan Huckleberry and Tilmann Wurzbacher (eds.) Infinite dimensional Kähler manifolds (Oberwolfach 1995), Oberwolfach Seminars, 31, Birkhäuser, Basel, 2001, pp. 131178.CrossRefGoogle Scholar
Neeb, K.-H., Towards a Lie theory of locally convex groups . Jpn. J. Math. 1(2006), no. 2, 291468.Google Scholar
Neeb, K.-H., Infinite-dimensional Lie groups, 3rd cycle. Monastir (Tunisie), 2005, pp.76. cel-00391789. https://cel.archives-ouvertes.fr/cel-00391789 Google Scholar
Roberts, D. M. and Schmeding, A., Extending Whitney’s extension theorem: nonlinear function spaces. Preprint, 2020, arXiv:1801.04126v4 [math.DG].Google Scholar
Seeley, R. T., Extension of ${C}^{\infty }$ functions defined in a half space . Proc. Amer. Math. Soc. 15(1964), 625626.Google Scholar
Tidten, M., Fortsetzungen von ${C}^{\infty }$ -Funktionen, welche auf einer abgeschlossenen Menge in $\mathbb{R}^n$ definiert sind . Manuscr. Math. 27(1979), 291312.Google Scholar
Walter, B., Weighted diffeomorphism groups of Banach spaces and weighted mapping groups . Dissertationes Math. 484(2012), 1126.CrossRefGoogle Scholar
Whitney, H., Analytic extensions of differentiable functions defined in closed sets . Trans. Amer. Math. Soc. 36(1934), no. 1, 6389.CrossRefGoogle Scholar