Published online by Cambridge University Press: 20 November 2018
The purpose of this paper is to continue the investigation into the relationships amongst Massey products, lower central series of free groups and the free differential calculus (see [4], [9], [12]). In particular we set forth the notion of a universal Massey product ≪α1, …, αk≫, where the αi are one dimensional cohomology classes. This product is defined with zero indeterminacy, natural and multilinear in its variables.
In order to state the results we need some notation. Throughout F will denote the free group on fixed generators x1, …, xn and
will denote the lower central series of F. If I = (i1, …, ik) is a sequence such that 1 ≦ i1, …, ik ≦ n then ∂1 is the iterated Fox derivative and , where is the augmentation. By convention we set ∂1 = identity if I is empty.