Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T22:08:25.591Z Has data issue: false hasContentIssue false

Maschke Modules Over Dedekind Rings

Published online by Cambridge University Press:  20 November 2018

Irving Reiner*
Affiliation:
Institute for Advanced Study and University of Illinois
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use the following notation throughout:

.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1956

References

1. Ckevalley, C., L'arithmétique dans les algèbres de matrices, Act. Sci. et Ind. 229 (1935).Google Scholar
2. Deuring, M., Algebren (Berlin, 1949).Google Scholar
3. W. Gaschütz, , Ueber den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen Gruppen, Math. Z., 56 (1952), 376387.Google Scholar
4. Higman, D. G., On orders in separable algebras, Can. J. Math., 7 (1955), 509515.Google Scholar
5. Ikeda, M., On a theorem of Gaschütz, Osaka Math. J., 5 (1953), 5358.Google Scholar
6. Jacobson, N., The Theory of Rings (New York, 1943).Google Scholar
7. Kasch, F., Grundlagen einer Théorie der Frobeniuserweiterungen, Math. Ann., 127 (1954), 453474.Google Scholar
8. Kaplansky, I., Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc, 72 (1952), 327340.Google Scholar
9. Maranda, J.-M., On the equivalence of representations of finite groups by groups of automorphisms of modules over Dedekind rings, Can. J. Math., 7 (1955), 516526.Google Scholar
10. Nagao, H. and Nakayama, T., On the structure of (M )- and (Mu)-modules, Math. Z., 59 (1953), 164170.Google Scholar
11. Steinitz, E., Rechteckige Système und Moduln in algebraischen Zahlkörpern, Math. Ann. I, 71 (1911), 328354; II, 72 (1912), 297–345.Google Scholar
12. van der Waerden, B. L., Modern Algebra, II (New York, 1950).Google Scholar
13. Zassenhaus, H., Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen, Hamb. Abh., 12 (1938), 276288.Google Scholar