Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T10:01:43.419Z Has data issue: false hasContentIssue false

Lifting Quasianalytic Mappings over Invariants

Published online by Cambridge University Press:  20 November 2018

Armin Rainer*
Affiliation:
Fakultät für Mathematik, Universität Wien, A-1090 Wien, Austria email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $\rho :\,G\,\to \,\text{GL}\left( V \right)$ be a rational finite dimensional complex representation of a reductive linear algebraic group $G$, and let ${{\sigma }_{1}},\ldots ,{{\sigma }_{n}}$ be a system of generators of the algebra of invariant polynomials $\mathbb{C}{{\left[ V \right]}^{G}}$. We study the problem of lifting mappings $f:\,{{\mathbb{R}}^{q}}\,\supseteq \,U\,\to \,\sigma \left( V \right)\,\subseteq \,{{\mathbb{C}}^{n}}$ over the mapping of invariants $\sigma \,=\,\left( {{\sigma }_{1}},\ldots ,{{\sigma }_{n}} \right):\,V\,\to \,\sigma \left( V \right)$. Note that $\sigma \left( V \right)$ can be identified with the categorical quotient $V//G$ and its points correspond bijectively to the closed orbits in $V$. We prove that if $f$ belongs to a quasianalytic subclass $C\subseteq {{C}^{\infty }}$ satisfying some mild closedness properties that guarantee resolution of singularities in $C$, e.g., the real analytic class, then $f$ admits a lift of the same class $C$ after desingularization by local blow-ups and local power substitutions. As a consequence we show that $f$ itself allows for a lift that belongs to $\text{SB}{{\text{V}}_{\text{loc}}}$, i.e., special functions of bounded variation. If $\rho $ is a real representation of a compact Lie group, we obtain stronger versions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[1] Alekseevsky, D., Kriegl, A. Losik, M. and Michor, P. W., Lifting smooth curves over invariants for representations of compact Lie groups. Transform. Groups 5(2000), no. 2, 103110. http://dx.doi.org/10.1007/BF01236464 Google Scholar
[2] Ambrosio, L., Fusco, N. and Pallara, D. Functions of bounded variation and free discontinuity problems. The Clarendon Press, Oxford University Press, New York, 2000.Google Scholar
[3] Bierstone, E., Lifting isotopies from orbit spaces. Topology 14(1975), no. 3, 245252. http://dx.doi.org/10.1016/0040-9383(75)90005-1 Google Scholar
[4] Bierstone, E. and Milman, P. D., Semianalytic and subanalytic sets. Inst. Hautes Études Sci. Publ. Math. (1988), no. 67, 542.Google Scholar
[5] Bierstone, E. and Milman, P. D., Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128(1997), no. 2, 207302. http://dx.doi.org/10.1007/s002220050141 Google Scholar
[6] Bierstone, E. and Milman, P. D., Resolution of singularities in Denjoy-Carleman classes. Selecta Math. 10(2004), no. 1, 128. http://dx.doi.org/10.1007/s00029-004-0327-0 Google Scholar
[7] Dadok, J. and Kac, V. Polar representations. J. Algebra 92(1985), no. 2, 504524. http://dx.doi.org/10.1016/0021-8693(85)90136-X Google Scholar
[8] De Giorgi, E. and L.Ambrosio, New functionals in the calculus of variations. (Italian) Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82(1988), no. 2, 199210 .Google Scholar
[9] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero. I. II. Ann. of Math. (2) 79 (1964), 109203; 205–326.Google Scholar
[10] Kriegl, A., Losik, M. Michor, P. W., and Rainer, A. Lifting smooth curves over invariants for representations of compact Lie groups. II. J. Lie Theory 15(2005), no. 1, 227234.Google Scholar
[11] Kriegl, A., Lifting smooth curves over invariants for representations of compact Lie groups. III. J. Lie Theory 16(2006), no. 3, 579600.Google Scholar
[12] Kriegl, A., Addendum to: “Lifting smooth curves over invariants for representations of compact Lie groups. III” [J. Lie Theory 16 (2006), no. 3, 579–600]. J. Lie Theory 22(2012), no. 1, 245249.Google Scholar
[13] Kriegl, A., Lifting mappings over invariants of finite groups. Acta Math. Univ. Comenian. 77(2008), no. 1, 93122.Google Scholar
[14] Kriegl, A. and Michor, P. W., The convenient setting of global analysis. Mathematical Surveys and Monographs 53. American Mathematical Society, Providence, RI, 1997,Google Scholar
[15] Kriegl, A., Michor, P. W., and Rainer, A. The convenient setting for non-quasianalytic Denjoy-Carleman differentiable mappings. J. Funct. Anal. 256(2009), no. 11, 35103544. http://dx.doi.org/10.1016/j.jfa.2009.03.003 Google Scholar
[16] Losik, M., Lifts of diffeomorphisms of orbit spaces for representations of compact Lie groups. Geom. Dedicata 88(2001), no. 1-3, 2136. http://dx.doi.org/10.1023/A:1013180828701 Google Scholar
[17] Losik, M., Michor, P. W., and Rainer, A. A generalization of Puiseux's theorem and lifting curves over invariants. Rev. Mat. Complut., Published online 22 February, 2011. http://dx.doi.org/10.1007/s13163-011-0062-y Google Scholar
[18] Luna, D., Slices étales. In: Sur les groupes algébriques. Bull. Soc. Math. France Mém. 33. Société Mathématique de France, Paris, 1973, pp. 81105.Google Scholar
[19] Montgomery, D. and Yang, C. T., The existence of a slice. Ann. of Math. 65(1957), 108116. http://dx.doi.org/10.2307/1969667 Google Scholar
[20] Palais, R. S., The classification of G-spaces. Mem. Amer. Math. Soc. No. 36, 1960.Google Scholar
[21] Procesi, C. and Schwarz, G. Inequalities defining orbit spaces. Invent. Math. 81(1985), no. 3, 539554. http://dx.doi.org/10.1007/BF01388587 Google Scholar
[22] Rainer, A., Quasianalytic multiparameter perturbation of polynomials and normal matrices. Trans. Amer. Math. Soc. 363(2011), no. 9, 49454977. http://dx.doi.org/10.1090/s0002-9947-2011-05311-0 Google Scholar
[23] Schwarz, G. W., Lifting smooth homotopies of orbit spaces. Inst. Hautes Études Sci. Publ. Math. (1980), no. 51, 37135.Google Scholar
[24] Thilliez, V., On quasianalytic local rings. Expo. Math. 26(2008), no. 1, 123.Google Scholar
[25] Vinberg, È. B. and Popov, V. L., Invariant theory. In: Algebraic Geometry 4 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 137314, 315.Google Scholar