Published online by Cambridge University Press: 20 November 2018
Sur une surface de Riemann, l'énergie d'une application à valeurs dans une variété riemannienne est une fonctionnelle invariante conforme, ses points critiques sont les applications harmoniques. Nous proposons ici un analogue en dimension supérieure, en construisant une fonctionnelle invariante conforme pour les applications entre deux variétés riemanniennes, dont la variété de départ est de dimension $n$ paire. Ses points critiques satisfont une EDP elliptique d'ordre $n$ non-linéaire qui est covariante conforme par rapport à la variété de départ, on les appelle les applications conformeharmoniques. Dans le cas des fonctions, on retrouve l'opérateur GJMS, dont le terme principal est une puissance $n/2$ du laplacien. Quand $n$ est impaire, les mêmes idées permettent de montrer que le terme constant dans le développement asymptotique de l'énergie d'une application asymptotiquement harmonique sur une variété $\text{AHE}$ est indépendant du choix du représentant de l'infini conforme.