Article contents
Lagrange's Theorem for Hopf Monoids in Species
Published online by Cambridge University Press: 20 November 2018
Abstract
Following Radford's proof of Lagrange's theorem for pointed Hopf algebras, we prove Lagrange‘s theorem for Hopf monoids in the category of connected species. As a corollary, we obtain necessary conditions for a given subspecies $\mathbf{k}$ of a Hopf monoid $\mathbf{h}$ to be a Hopf submonoid: the quotient of any one of the generating series of $\mathbf{h}$ by the corresponding generating series of $\mathbf{k}$ must have nonnegative coefficients. Other corollaries include a necessary condition for a sequence of nonnegative integers to be the dimension sequence of a Hopf monoid in the form of certain polynomial inequalities and of a set-theoretic Hopf monoid in the form of certain linear inequalities. The latter express that the binomial transform of the sequence must be nonnegative.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2013
References
- 3
- Cited by