Published online by Cambridge University Press: 20 August 2020
We construct quantum invariants of balanced sutured 3-manifolds with a ${\text {Spin}^c}$ structure out of an involutive (possibly nonunimodular) Hopf superalgebra H. If H is the Borel subalgebra of ${U_q(\mathfrak {gl}(1|1))}$ , we show that our invariant is computed via Fox calculus, and it is a normalization of Reidemeister torsion. The invariant is defined via a modification of a construction of Kuperberg, where we use the ${\text {Spin}^c}$ structure to take care of the nonunimodularity of H or $H^{*}$ .
This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No. 665850.