Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T01:06:51.187Z Has data issue: false hasContentIssue false

Kernel Generated Two-Time Parameter Gaussian Processes and Some of Their Path Properties

Published online by Cambridge University Press:  20 November 2018

Miklós Csörgő
Affiliation:
Department of Mathematics and Statistics Carleton University Ottawa, Ontario K1S 5B6
Zheng-Yan Lin
Affiliation:
Department of Mathematics Hangzhou University Hangzhou, Zhejiang People's Republic of China
Qi-Man Shao
Affiliation:
Department of Mathematics Hangzhou University Hangzhou, Zhejiang People's Republic of China Department of Mathematics National University of Singapore Singapore 051J
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study path properties of kernel generated two-time parameter, not necessarily stationary, Gaussian processes. We establish large deviation results for some increments of these processes and use these results to prove some of their moduli of continuity and other path properties.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1994

References

1. Adler, R. J.,Art introduction to continuity, extrema, and related topics for general Gaussian processes, IMS Lecture Notes, Monograph Series 12.Google Scholar
2. Antoniadis, A. and Carmona, R., Eigenfunction expansions for infinite dimensional Ornstein-Uhlenbeck processes,Yrobab. Theor. Relat. Fields 74(1987), 3154.Google Scholar
3. Berman, S. M., Sojourns and Extremes of Stochastic Processes. Wadsworth & Books Cole Statistics, Probab. series, California, 1991.Google Scholar
4. Carmona, R., Measurable norms and some Banach space valued Gaussian processes, Duke Math. J. 44 (1977), 109127.Google Scholar
5. Csâki, E. and Csôrgô, M., Inequalities for increments of stochastic processes and moduli of continuity, Ann. Probab. 20(1992), 10311052.Google Scholar
6 Csâki, E. and Csôrgô, M., Fernique type inequalities for not necessarily Gaussian processes, C. R. Math. Rep. Acad. Sci. Canada 12(1990), 149154.Google Scholar
7. Csâki, E., Csôrgô, M., Lin, Z. Y. and P. Révész, On infinite series of independent Ornstein-Uhlenbeck processes, Stochastic Process. Appl. 39(1991), 2544.Google Scholar
8. Csâki, E., Csôrgô, M. and Shao, Q. M., Fernique type inequalities and moduli of continuity for I2-valued Ornstein-Uhlenbeck processes, Ann. Inst. H. Poincaré. Probab. Statist. 28(1992), 479517.Google Scholar
9. Csâki, E., Csôrgô, M. and Shao, Q. M. Moduli of continuity for lp -valued Gaussian processes. In: Tech. Rep. Ser. Lab. Res. Stat. Probab. No. 160, Carleton University, University of Ottawa, Ottawa 1991, (1990).Google Scholar
10. Csôrgô, M. and Lin, Z. Y., Path properties of infinite dimensional Ornstein-Uhlenbeck processes. In: Colloquia Mathematica Societatis Jânos Bolyai 57; Limit Theorems in Probability and Statistics, Pecs, Hungary, (1989), 107135.Google Scholar
11. Csôrgô, M. and Lin, Z. Y., On moduli of continuity for Gaussian and \2 processes generated by Ornstein-Uhlenbeck processes, C. R. Math. Rep. Acad. Sci. Canada 10(1988), 203207.Google Scholar
12. Csôrgô, M. and Lin, Z. Y., On moduli of continuity for Gaussian and I2-norm squared processes generated by Ornstein-Uhlenbeck processes, Canad. J. Math 42(1990), 141158.Google Scholar
13. Csôrgô, M. and Lin, Z. Y., Path properties oj“kernel generated two-time parameter Gaussian processes, Probab. Theor. Relat. Fields 89(1991), 423445.Google Scholar
14. Csôrgô, M., Lin, Z. Y. and Shao, Q. M., Path properties for l°°-valued Gaussian processes. In: Tech. Rep. Ser. Lab. Res. Stat. Proab. No. 167, Carleton University, University of Ottawa, Ottawa, 1991.Google Scholar
15. Csôrgô, M. and P. Révész, Strong Approximations in Probability and Statistics, Akadémiai Kiadô, Budapest, Academic Press, New York, 1981.Google Scholar
16. DaPrato, G., Kwapien, S. and Zabczyk, J., Regularity of solutions of linear stochastic equations in Hilbert space, Stochastics 23(1987), 123.Google Scholar
17. Dawson, D. A., Stochastic evolution equations, Math. Biosci. 15(1972), 287316.Google Scholar
18. Dawson, D. A., Stochastic evolution equations and related measure processes, J .Multivariate Anal. 5(1975), 152.Google Scholar
19. Fernique, X., Continuité des processus Gaussiens, C. R. Acad. Sci. Paris 258(1964), 60586060.Google Scholar
20. Fernique, X.,Régularité des trajectoires des fonctions aléatoires Gaussiennes, Lecture Notes in Math. 480 (1975), 196, Springer-Verlag, Berlin.Google Scholar
21. Fernique, X.,La régularité des fonctions aléatoires d'Ornstein-Uhlenbeck à valeurs dans h; le cas diagonal, C. R. Acad. Sci. Paris 309(1989), 5962.Google Scholar
22. Fernique, X.,Sur la régularité de certaines fonctions aléatoires d’ Ornstein-Uhlenbeck, Ann. Inst. H. Poincaré. Probab. Statist. 26(1990), 399417.Google Scholar
23. Gordon, Y., Some inequalities for Gaussian processes and applications, Israel J. Math. 50(1985), 265289.Google Scholar
24. Holley, R. and Stroock, D., Generalized Ornstein-Uhlenbeckprocesses and infinite particle branching Brownian motions, Publ. Res. Inst. Math. Sci. Kyoto Univ. 14(1978), 741788.Google Scholar
25. Iscoe, I., Marcus, M., McDonald, D., Talagrand, M. and Zinn, J., Continuity of I2-valued Ornstein-Uhlenbeck processes, Ann. Probab. 18(1990), 6884.Google Scholar
26. Iscoe, I. and McDonald, D., Large deviations for I2 -valued Ornstein-Uhlenbeck processes, Ann. Probab. 17(1989), 5873.Google Scholar
27. Jain, N. C. and Marcus, M. B., Continuity of subgaussianprocesses. In: Probability on Banach spaces (ed. J. Kuelbs), Advances in Probability and Related Topics (series ed. P. Ney) 4(1978), 81196.Google Scholar
28. Kallianpur, G. and Wolpert, R., Infinite dimensional stochastic differential equation models for spatially distributed neurons, J. Appl. Math. Optim. 12(1984), 125172.Google Scholar
29. Kotelenez, P., A maximal inequality for stochastic integrals on Hilbert spaces and space-time regularity of linear stochastic partial differential equations, Stochastics 21(1987), 345358.Google Scholar
30. Lin, Z. Y., Two-parameter Gaussian processes with kernel, (Chinese), Acta Math. Sinica 34(1991), 1226.Google Scholar
31. Miyahara, Y., Infinite dimensional Langevin equation and Fokker-Planck equation, Nagoya Math. J. 81 (1981), 177223.Google Scholar
32. Rôckner, M., Traces of harmonic functions and a new path space for the free quantum field, J. Funct. Anal. 79(1988), 211249.Google Scholar
33. Schmuland, B., Moduli of continuity for some Hilbert space valued Ornstein-Uhlenbeck processes, C. R. Math. Rep. Acad. Sci. Canada 10(1988) 197202.Google Scholar
34. Schmuland, B., Some regularity results on infinite dimensional diffusions via Dirichlet forms, Stochastic Anal. Appl. 6(1988), 327348.Google Scholar
35. Schmuland, B., An energy approach to reversible infinite dimensional Ornstein-Uhlenbeckprocesses, manuscript, 1989.Google Scholar
36 Schmuland, B., Sample path properties of P-valued Ornstein-Uhlenbeckprocesses, Canad. Math. Bull. 33( 1990), 358366.Google Scholar
37. Slepian, D., The one sided barrier problem for Gaussian noise, Bell Syst. Tech. J. 41 ( 1962), 463501.Google Scholar
38. Walsh, J. B., A stochastic model ofneural response, Adv. in Appl. Probab. 13(1981), 231281.Google Scholar
39. Walsh, J. B., Regularity properties of a stochastic partial differential equation. In: Proc. 1983 Seminar on Stochastic Processes (eds. E. Cinlar, K. L. Chung and R. K. Getoor), Birkhàuser, Boston, 1984.Google Scholar